Energizing cell-free protein synthesis with glucose metabolism

被引:134
|
作者
Calhoun, KA [1 ]
Swartz, JR [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
cell-free protein synthesis; E. coli coupled transcription-translation; energy source; glucose; glucose-6-phosphate (G6P); cell-free biology;
D O I
10.1002/bit.20449
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In traditional cell-free protein synthesis reactions, the energy source (typically phosphoenolpyruvate (PEP) or creatine phosphate) is the most expensive substrate. However, for most biotechnology applications glucose is the preferred commercial substrate. Previous attempts to use glucose in cell-free protein synthesis reactions have been unsuccessful. We have now developed a cell-free protein synthesis reaction where PEP is replaced by either glucose or glucose-6-phosphate (G6P) as the energy source, thus allowing these reactions to compete more effectively with in vivo protein production technologies. We demonstrate high protein yields in a simple batch-format reaction through pH control and alleviation of phosphate limitation. G6P reactions can produce high protein levels (similar to 700 mu g/mL of chloramphenical acetyl transferase (CAT)) when pH is stabilized through replacement of the HEPES buffer with Bis-Tris. Protein synthesis with glucose as an energy source is also possible, and CAT yields of similar to 550 mu g/mL are seen when both 10 mM phosphate is added to alleviate phosphate limitations and the Bis-Tris buffer concentration is increased to stabilize pH. By following radioactivity from [U-C-14]-glucose, we find that glucose is primarily metabolized to the anaerobic products, acetate and lactate. The ability to use glucose as an energy source in cell-free reactions is important not only for inexpensive ATP generation during protein synthesis, but also as an example of how complex biological systems can be understood and exploited through cell-free biology. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:606 / 613
页数:8
相关论文
共 50 条
  • [21] Cell-Free Protein Synthesis - Potential and Challenges
    Hausmann, Jan
    Kahlig, Alexander
    Werthmann, Hedwig
    Thein, Marcus
    PHARMAZEUTISCHE INDUSTRIE, 2013, 75 (12): : 1998 - 2001
  • [22] CELL-FREE PROTEIN SYNTHESIS BY RUMEN PROTOZOA
    CHESTERS, JK
    JOURNAL OF PROTOZOOLOGY, 1968, 15 (03): : 509 - &
  • [23] Rational improvement of cell-free protein synthesis
    Pedersen, Anders
    Hellberg, Kristofer
    Enberg, Johan
    Karlsson, B. Goran
    NEW BIOTECHNOLOGY, 2011, 28 (03) : 218 - 224
  • [24] Cell-free protein synthesis in a microfabricated reactor
    T. Nojima
    T. Fujii
    K. Hosokawa
    A. Yotsumoto
    S. Shoji
    I. Endo
    Bioprocess Engineering, 2000, 22 : 13 - 17
  • [25] Cell-free protein synthesis and assembly on a biochip
    Heyman, Yael
    Buxboim, Amnon
    Wolf, Sharon G.
    Daube, Shirley S.
    Bar-Ziv, Roy H.
    NATURE NANOTECHNOLOGY, 2012, 7 (06) : 374 - 378
  • [26] Creating cell-free protein synthesis factories
    Heide, Chiara
    Ces, Oscar
    Polizzi, Karen M.
    Kontoravdi, Cleo
    PHARMACEUTICAL BIOPROCESSING, 2018, 6 (01) : 3 - 6
  • [27] SYNAPTOSOMAL PROTEIN SYNTHESIS IN A CELL-FREE SYSTEM
    MORGAN, IG
    AUSTIN, L
    JOURNAL OF NEUROCHEMISTRY, 1968, 15 (01) : 41 - &
  • [28] Cell-free protein synthesis: the state of the art
    James W. Whittaker
    Biotechnology Letters, 2013, 35 : 143 - 152
  • [29] Wheat germ cell-free protein synthesis
    Endo, Yaeta
    Sawasaki, Tatsuya
    SEIKAGAKU, 2007, 79 (03): : 229 - 238
  • [30] A novel cell-free protein synthesis system
    Sitaraman, K
    Esposito, D
    Klarmann, G
    Le Grice, SF
    Hartley, JL
    Chatterjee, DK
    JOURNAL OF BIOTECHNOLOGY, 2004, 110 (03) : 257 - 263