ON THE LOCATION OF EIGENVALUES OF MATRIX POLYNOMIALS

被引:7
|
作者
Cong-Trinh Le [1 ,2 ]
Thi-Hoa-Binh Du [3 ]
Tran-Duc Nguyen [3 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Quy Nhon Univ, Dept Math, Quy Nhon City, Binh Dinh, Vietnam
来源
OPERATORS AND MATRICES | 2019年 / 13卷 / 04期
关键词
Matrix polynomial; lambda-matrix; polynomial eigenvalue problem; ENESTROM-KAKEYA THEOREM; NUMERICAL RANGE; ZEROS;
D O I
10.7153/oam-2019-13-66
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A number lambda is an element of C is called an eigenvalue of the matrix polynomial P(z) if there exists a nonzero vector x is an element of C-n such that P(lambda)x = 0. Note that each finite eigenvalue of P(z) is a zero of the characteristic polynomial det(P(z)). In this paper we establish some (upper and lower) bounds for eigenvalues of matrix polynomials based on the norm of their coefficient matrices and compare these bounds to those given by N. J. Higham and F. Tisseur [8], J. Maroulas and P. Psarrakos [12].
引用
收藏
页码:937 / 954
页数:18
相关论文
共 50 条
  • [1] Location of Right Eigenvalues of Quaternionic Matrix Polynomials
    Istkhar Ali
    Ninoslav Truhar
    [J]. Advances in Applied Clifford Algebras, 2019, 29
  • [2] Location of Right Eigenvalues of Quaternionic Matrix Polynomials
    Ali, Istkhar
    Truhar, Ninoslav
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (04)
  • [3] LOCATING THE EIGENVALUES OF MATRIX POLYNOMIALS
    Bini, Dario A.
    Noferini, Vanni
    Sharify, Meisam
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1708 - 1727
  • [4] On the bounds of eigenvalues of matrix polynomials
    W. M. Shah
    Sooraj Singh
    [J]. The Journal of Analysis, 2023, 31 : 821 - 829
  • [5] On the bounds of eigenvalues of matrix polynomials
    Shah, W. M.
    Singh, Sooraj
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (01): : 821 - 829
  • [6] Bounds for eigenvalues of matrix polynomials
    Higham, NJ
    Tisseur, F
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 : 5 - 22
  • [7] ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS
    Shah, Wali Mohammad
    Monga, Zahid Bashir
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (02): : 145 - 152
  • [8] Matrix polynomials with specified eigenvalues
    Karow, Michael
    Mengi, Emre
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 : 457 - 482
  • [9] Bounds for eigenvalues of matrix polynomials with applications to scalar polynomials
    Melman, A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 504 : 190 - 203
  • [10] ON EIGENVALUES OF PERTURBED QUADRATIC MATRIX POLYNOMIALS
    RADJABALIPOUR, M
    SALEMI, A
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 22 (02) : 242 - 247