On the bounds of eigenvalues of matrix polynomials

被引:0
|
作者
W. M. Shah
Sooraj Singh
机构
[1] Central University of Kashmir,
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Matrix polynomial; Polynomial eigenvalue problem; Bounds; 15A18; 15A42; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let M(z)=Amzm+Am-1zm-1+⋯+A1z+A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(z)=A_mz^m+A_{m-1}z^{m-1}+\cdots +A_1z+A_0$$\end{document} be a matrix polynomial, whose coefficients Ak∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k\in {{\mathbb {C}}}^{n\times n}$$\end{document}, ∀k=0,1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \, k=0,1,\ldots , m$$\end{document}, satisfying the following dominant property ‖Am‖>‖Ak‖,∀k=0,1,…,m-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert A_m\Vert >\Vert A_k\Vert ,\,\forall \, k=0,1,\ldots ,m-1, \end{aligned}$$\end{document}then it is known that all eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} of M(z) locate in the open disk λ<1+‖Am‖‖Am-1‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \lambda \right| <1+\Vert A_m\Vert \Vert {A_m}^{-1}\Vert . \end{aligned}$$\end{document}In this paper, among other things, we prove some refinements of this result, which in particular provide refinements of some results concerning the distribution of zeros of polynomials in the complex plane.
引用
收藏
页码:821 / 829
页数:8
相关论文
共 50 条
  • [1] On the bounds of eigenvalues of matrix polynomials
    Shah, W. M.
    Singh, Sooraj
    JOURNAL OF ANALYSIS, 2023, 31 (01): : 821 - 829
  • [2] Bounds for eigenvalues of matrix polynomials
    Higham, NJ
    Tisseur, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 : 5 - 22
  • [3] ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS
    Shah, Wali Mohammad
    Monga, Zahid Bashir
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (02): : 145 - 152
  • [4] New Bounds For The Eigenvalues Of Matrix Polynomials
    Burqan, Aliaa
    Hbabesh, Hamdan
    Qazza, Ahmad
    Khandaqji, Mona
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02): : 806 - 818
  • [6] Bounds for the Eigenvalues of Matrix Polynomials with Commuting Coefficients
    Watheq Bani-Domi
    Fuad Kittaneh
    Rawan Mustafa
    Results in Mathematics, 2023, 78
  • [7] Bounds for the Eigenvalues of Matrix Polynomials with Commuting Coefficients
    Bani-Domi, Watheq
    Kittaneh, Fuad
    Mustafa, Rawan
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [8] Distance bounds for prescribed multiple eigenvalues of matrix polynomials
    Psarrakos, Panayiotis J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) : 4107 - 4119
  • [9] Bounds for Eigenvalues of Matrix Polynomials Over Quaternion Division Algebra
    Ahmad, Sk. Safique
    Ali, Istkhar
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (04) : 1095 - 1125
  • [10] Bounds for Eigenvalues of Matrix Polynomials Over Quaternion Division Algebra
    Sk. Safique Ahmad
    Istkhar Ali
    Advances in Applied Clifford Algebras, 2016, 26 : 1095 - 1125