Extremal quantum states and their Majorana constellations

被引:42
|
作者
Bjork, G. [1 ]
Klimov, A. B. [2 ]
de la Hoz, P. [3 ]
Grassl, M. [4 ,5 ]
Leuchs, G. [4 ,5 ]
Sanchez-Soto, L. L. [3 ,4 ,5 ]
机构
[1] Royal Inst Technol KTH, Dept Appl Phys, AlbaNova, S-10691 Stockholm, Sweden
[2] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico
[3] Univ Complutense Madrid, Dept Opt, Fac Fis, E-28040 Madrid, Spain
[4] Max Planck Inst Phys Lichts, D-91058 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
基金
瑞典研究理事会;
关键词
D O I
10.1103/PhysRevA.92.031801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the cumulative distribution of those multipoles and work out the corresponding extremal pure states. We find that SU(2) coherent states are maximal to any order whereas the converse case of minimal states (which can be seen as the most quantum ones) is investigated for a diverse range of the number of photons. Taking advantage of the Majorana representation, we recast the problem as that of distributing a number of points uniformly over the surface of the Poincare sphere.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Chiral Majorana edge states in HgTe quantum wells
    Weithofer, L.
    Recher, P.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [22] On extremal quantum states of composite systems with fixed marginals
    Rudolph, O
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) : 4035 - 4041
  • [23] Quantum transport through the system of parallel quantum dots with Majorana bound states
    Wang, Ning
    Lv, Shuhui
    Li, Yuxian
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (08)
  • [24] Quantum steering ellipsoids, extremal physical states and monogamy
    Milne, Antony
    Jevtic, Sania
    Jennings, David
    Wiseman, Howard
    Rudolph, Terry
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [25] Control and detection of Majorana bound states in quantum dot arrays
    Stenger, John P. T.
    Woods, Benjamin D.
    Frolov, Sergey M.
    Stanescu, Tudor D.
    PHYSICAL REVIEW B, 2018, 98 (08)
  • [26] Majorana Bound States Hallmarks in a Quantum Topological Interferometer Ring
    Calle, Ana M.
    Orellana, Pedro A.
    Otalora, Jorge A.
    ANNALEN DER PHYSIK, 2021, 533 (08)
  • [27] Entangling spins in double quantum dots and Majorana bound states
    Rancic, Marko J.
    Hoffman, Silas
    Schrade, Constantin
    Klinovaja, Jelena
    Loss, Daniel
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [28] Majorana constellations for optical scalar beams and vector fields
    Torres-Leal, F.
    Herrera, E. Garcia
    Rodriguez, M. P. Morales
    Perez-Garcia, B.
    Rodriguez-Lara, B. M.
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [29] The modulation of Majorana bound states comb through quantum dots
    Chen, Xiao-Feng
    Liu, Long
    Aslam, Muhammad
    He, Jing
    Song, Juntao
    Li, Yu-Xian
    SOLID STATE COMMUNICATIONS, 2020, 318
  • [30] Entangled states of two quantum dots mediated by Majorana fermions
    Shi, Z. C.
    Wang, W.
    Yi, X. X.
    NEW JOURNAL OF PHYSICS, 2016, 18