Extremal quantum states and their Majorana constellations

被引:42
|
作者
Bjork, G. [1 ]
Klimov, A. B. [2 ]
de la Hoz, P. [3 ]
Grassl, M. [4 ,5 ]
Leuchs, G. [4 ,5 ]
Sanchez-Soto, L. L. [3 ,4 ,5 ]
机构
[1] Royal Inst Technol KTH, Dept Appl Phys, AlbaNova, S-10691 Stockholm, Sweden
[2] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico
[3] Univ Complutense Madrid, Dept Opt, Fac Fis, E-28040 Madrid, Spain
[4] Max Planck Inst Phys Lichts, D-91058 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
基金
瑞典研究理事会;
关键词
D O I
10.1103/PhysRevA.92.031801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the cumulative distribution of those multipoles and work out the corresponding extremal pure states. We find that SU(2) coherent states are maximal to any order whereas the converse case of minimal states (which can be seen as the most quantum ones) is investigated for a diverse range of the number of photons. Taking advantage of the Majorana representation, we recast the problem as that of distributing a number of points uniformly over the surface of the Poincare sphere.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum metrology at the limit with extremal Majorana constellations
    Bouchard, F.
    de la Hoz, P.
    Bjork, G.
    Boyd, R. W.
    Grassl, M.
    Hradil, Z.
    Karimi, E.
    Klimov, A. B.
    Leuchs, G.
    Rehacek, J.
    Sanchez-Soto, L. L.
    OPTICA, 2017, 4 (11): : 1429 - 1432
  • [2] Robust quantum metrology with random Majorana constellations
    Goldberg, Aaron Z.
    Hervas, Jose R.
    Sanz, Angel S.
    Klimov, Andrei B.
    Rehacek, Jaroslav
    Hradil, Zdenek
    Hiekkamaki, Markus
    Eriksson, Matias
    Fickler, Robert
    Leuchs, Gerd
    Sanchez-Soto, Luis L.
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [3] Stars of the quantum Universe: extremal constellations on the Poincare sphere
    Bjork, Gunnar
    Grassl, Markus
    de la Hoz, Pablo
    Leuchs, Gerd
    Sanchez-Soto, Luis L.
    PHYSICA SCRIPTA, 2015, 90 (10)
  • [4] Extremal quantum states
    Goldberg, Aaron Z.
    Klimov, Andrei B.
    Grassl, Markus
    Leuchs, Gerd
    Sanchez-Soto, Luis L.
    AVS QUANTUM SCIENCE, 2020, 2 (04):
  • [5] Multipoles from Majorana constellations
    Romero, J. L.
    Klimov, A. B.
    Goldberg, A. Z.
    Leuchs, G.
    Sanchez-Soto, L. L.
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [6] A note on Majorana representation of quantum states
    Li, Chi-Kwong
    Nakahara, Mikio
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (03): : 1084 - 1088
  • [7] A note on Majorana representation of quantum states
    Li, Chi-Kwong
    Nakahara, Mikio
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [8] Extremal quantum states in coupled systems
    Parthasarathy, KR
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03): : 257 - 268
  • [9] Majorana bound states in a driven quantum dot
    Medina-Cuy, Fabian
    Martinez, Dunkan
    Dominguez-Adame, Francisco
    Orellana, P. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (08):
  • [10] Influence of Majorana Bound States in Quantum Rings
    Medina, Fabian
    Ramos-Andrade, Juan Pablo
    Rosales, Luis
    Orellana, Pedro
    ANNALEN DER PHYSIK, 2020, 532 (09)