A STOCHASTIC MAXIMUM PRINCIPLE FOR A MARKOV REGIME-SWITCHING JUMP-DIFFUSION MODEL AND ITS APPLICATION TO FINANCE

被引:77
|
作者
Zhang, Xin [1 ,2 ]
Elliott, Robert J. [3 ,4 ]
Siu, Tak Kuen [5 ,6 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Univ Calgary, Haskayne Sch Business, Calgary, AB, Canada
[5] Macquarie Univ, Fac Business & Econ, Dept Appl Finance & Actuarial Studies, Sydney, NSW 2109, Australia
[6] Macquarie Univ, Fac Business & Econ, Ctr Financial Risk, Sydney, NSW 2109, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
stochastic maximum principle; regime switching; jump-diffusion; dynamic programming; mean-variance portfolio selection; RETURNS; CHAINS;
D O I
10.1137/110839357
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a sufficient stochastic maximum principle for a stochastic optimal control problem, where the state process is governed by a continuous-time Markov regime-switching jump-diffusion model. We also establish the relationship between the stochastic maximum principle and the dynamic programming principle in a Markovian case. Applications of the stochastic maximum principle to the mean-variance portfolio selection problem are discussed.
引用
收藏
页码:964 / 990
页数:27
相关论文
共 50 条
  • [31] Forward starting options pricing under a regime-switching jump-diffusion model with Wishart stochastic volatility and stochastic interest rate
    Deng, Guohe
    Liu, Shuai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (03) : 331 - 356
  • [32] The Stochastic Maximum Principle for a Jump-Diffusion Mean-Field Model Involving Impulse Controls and Applications in Finance
    Li, Cailing
    Liu, Zaiming
    Wu, Jinbiao
    Huang, Xiang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (01) : 26 - 42
  • [33] RISK MANAGEMENT OF GUARANTEED MINIMUM BENEFITS UNDER A REGIME-SWITCHING JUMP-DIFFUSION MODEL
    Hu, Wenlong
    Pang, Tao
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2025, 15 (01): : 52 - 76
  • [34] Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients
    Lee, Sunju
    Lee, Younhee
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1741 - 1762
  • [35] The Stochastic Maximum Principle for a Jump-Diffusion Mean-Field Model Involving Impulse Controls and Applications in Finance
    Cailing Li
    Zaiming Liu
    Jinbiao Wu
    Xiang Huang
    Journal of Systems Science and Complexity, 2020, 33 : 26 - 42
  • [36] The Stochastic Maximum Principle for a Jump-Diffusion Mean-Field Model Involving Impulse Controls and Applications in Finance
    LI Cailing
    LIU Zaiming
    WU Jinbiao
    HUANG Xiang
    JournalofSystemsScience&Complexity, 2020, 33 (01) : 26 - 42
  • [37] OPTIMAL PORTFOLIO AND CONSUMPTION FOR A MARKOVIAN REGIME-SWITCHING JUMP-DIFFUSION PROCESS
    Zhang, Caibin
    Liang, Zhibin
    Yuen, Kam Chuen
    ANZIAM JOURNAL, 2021, 63 (03): : 308 - 332
  • [38] Weak Necessary and Sufficient Stochastic Maximum Principle for Markovian Regime-Switching Diffusion Models
    Li, Yusong
    Zheng, Harry
    APPLIED MATHEMATICS AND OPTIMIZATION, 2015, 71 (01): : 39 - 77
  • [39] Weak Necessary and Sufficient Stochastic Maximum Principle for Markovian Regime-Switching Diffusion Models
    Yusong Li
    Harry Zheng
    Applied Mathematics & Optimization, 2015, 71 : 39 - 77
  • [40] A maximum principle for Markov regime-switching forward-backward stochastic differential games and applications
    Menoukeu-Pamen, Olivier
    Momeya, Romuald Herve
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2017, 85 (03) : 349 - 388