Calcination Temperature Effects on the Electrochemical Performance of Li2MnSiO4/C Cathode Material for Lithium Ion Batteries

被引:6
|
作者
Wei Yi [1 ]
Wang Li-Juan [1 ]
Yan Ji [1 ]
Sha Ou [1 ]
Tang Zhi-Yuan [1 ]
Ma Li [2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] McNair Technol Co Ltd, Dongguan 523800, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery; Cathode material; Li2MnSiO4; Solution method; Calcination temperature; LI2FESIO4; MN; FE; INTERCALATION; PHOSPHATES; OLIVINES; NI; CO;
D O I
10.3866/PKU.WHXB20111124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a new potential cathode material for lithium ion batteries, Li2MnSiO4/C was synthesized by a solution method. The thermal behavior of the precursor for Li2MnSiO4/C was measured by thermogravimetric (TG) analysis and the range of calcination temperatures from 600 to 800 degrees C was determined. X-ray powder diffraction (XRD) patterns indicated that all the Li2MnSiO4/C samples crystallized in an orthorhombic structure with space group Pmn2(1). The morphology and particle size of the samples were also characterized by scanning electron microscopy (SEM). The effects of calcination temperature on the electrochemical performance of Li2MnSiO4/C were studied using galvanostatic charge-discharge measurements at various current densities. The results showed that the sample prepared at 700 degrees C exhibited a much higher coulombic efficiency and better cyclic performance than the other samples.
引用
下载
收藏
页码:2587 / 2592
页数:6
相关论文
共 50 条
  • [31] Ionothermal synthesis and characterization of Li2MnSiO4/C composites as cathode materials for lithium-ion batteries
    Li, Xueliang
    Liu, Yunfu
    Xiao, Zhenghui
    Guo, Wei
    Zhang, Rui
    CERAMICS INTERNATIONAL, 2014, 40 (01) : 289 - 296
  • [32] SYNTHESIS AND PROPERTIES OF Li2MnSiO4 COMPOSITE CATHODE MATERIAL FOR SAFE Li-ION BATTERIES
    Molenda, Marcin
    Swietoslawski, Michal
    Rafalska-Lasocha, Alicja
    Dziembaj, Roman
    FUNCTIONAL MATERIALS LETTERS, 2011, 4 (02) : 135 - 138
  • [33] Study on the properties of Li2MnSiO4 as cathode material for lithium-ion batteries by sol-gel method
    Hou, Pengqing
    Feng, Jian
    Wang, Yafeng
    Wang, Luoxuan
    Li, Sinan
    Yang, Liu
    Luo, Shao-hua
    IONICS, 2020, 26 (04) : 1611 - 1616
  • [34] Synthesis and characterization of high capacity Li2MnSiO4/C cathode material for lithium-ion battery
    Qu, Long
    Fang, Shaohua
    Yang, Li
    Hirano, Shin-ichi
    JOURNAL OF POWER SOURCES, 2014, 252 : 169 - 175
  • [35] Sol-gel Synthesis of Li2MnSiO4/C Nanocomposite with Improved Electrochemical Performance for Lithium-ion Batteries
    Tan, Guiming
    Gui, Dayong
    Xiong, Weijian
    Chen, Wei
    Li, Shibin
    Cai, Xueqing
    Zong, Yangyang
    Liu, Jianhong
    2015 16TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, 2015,
  • [36] Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4
    Fisher, Craig A. J.
    Kuganathan, Navaratnarajah
    Islam, M. Saiful
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (13) : 4207 - 4214
  • [37] Study on the properties of Li2MnSiO4 as cathode material for lithium-ion batteries by sol-gel method
    Pengqing Hou
    Jian Feng
    Yafeng Wang
    Luoxuan Wang
    Sinan Li
    Liu Yang
    Shao-hua Luo
    Ionics, 2020, 26 : 1611 - 1616
  • [38] Synthesis, characterization and electrochemical performance of Li2MnSiO4/C cathode material by solid-state reaction
    Liu, Wengang
    Xu, Yunhua
    Yang, Rong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 480 (02) : L1 - L4
  • [39] Size controlled synthesis of Li2MnSiO4 nanoparticles: Effect of calcination temperature and carbon content for high performance lithium batteries
    Aravindan, V.
    Ravi, S.
    Kim, W. S.
    Lee, S. Y.
    Lee, Y. S.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 355 (02) : 472 - 477
  • [40] Study on the stability of Li2MnSiO4 cathode material in different electrolyte systems for Li-ion batteries
    Mancini, M.
    Bekaert, E.
    Diemant, T.
    Marinaro, M.
    de Biasi, L.
    Behm, R. J.
    Wohlfahrt-Mehrens, M.
    ELECTROCHIMICA ACTA, 2015, 176 : 679 - 688