Recurrent Conditional Generative Advarsarial Network for Image Deblurring

被引:21
|
作者
Liu, Jing [1 ]
Sun, Wanning [1 ]
Li, Mengjie [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Image deblurring; conditional generative adversarial network; receptive field recurrent; coarse-to-fine;
D O I
10.1109/ACCESS.2018.2888885
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, there is an increasing demand for images with high definition and fine textures, but images captured in natural scenes usually suffer from complicated blurry artifacts, caused mostly by object motion or camera shaking. Since these annoying artifacts greatly decrease image visual quality, deblurring algorithms have been proposed from various aspects. However, most energy-optimization-based algorithms rely heavily on blur kernel priors, and some learning-based methods either adopt pixel-wise loss function or ignore global structural information. Therefore, we propose an image deblurring algorithm based on a recurrent conditional generative adversarial network (RCGAN), in which the scale-recurrent generator extracts sequence spatio-temporal features and reconstructs sharp images in a coarse-to-fine scheme. To thoroughly evaluate the global and local generator performance, we further propose a receptive field recurrent discriminator. Besides, the discriminator takes blurry images as conditions, which helps to differentiate reconstructed images from real sharp ones. Last but not least, since the gradients are vanishing when training the generator with the output of the discriminator, a progressive loss function is proposed to enhance the gradients in back propagation and to take full advantage of discriminative features. Extensive experiments prove the superiority of RCGAN over state-of-the-art algorithms both qualitatively and quantitatively.
引用
收藏
页码:6186 / 6193
页数:8
相关论文
共 50 条
  • [21] Video deblurring using the generative adversarial network
    Shen H.
    Bian Q.
    Chen X.
    Wang Z.
    Tian X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (06): : 112 - 117
  • [22] Learning Image Vegetation Index through a Conditional Generative Adversarial Network
    Suarez, Patricia L.
    Sappa, Angel D.
    Vintimilla, Boris X.
    2017 IEEE SECOND ECUADOR TECHNICAL CHAPTERS MEETING (ETCM), 2017,
  • [23] Conditional Generative Adversarial Network for Monocular Image Depth Map Prediction
    Hao, Shengang
    Zhang, Li
    Qiu, Kefan
    Zhang, Zheng
    ELECTRONICS, 2023, 12 (05)
  • [24] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [25] Prior guided conditional generative adversarial network for single image dehazing
    Su, Yan Zhao
    Cui, Zhi Gao
    He, Chuan
    Li, Ai Hua
    Wang, Tao
    Cheng, Kun
    NEUROCOMPUTING, 2021, 423 : 620 - 638
  • [26] Image De-Raining Using a Conditional Generative Adversarial Network
    Zhang, He
    Sindagi, Vishwanath
    Patel, Vishal M.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (11) : 3943 - 3956
  • [27] HDR image generation method based on conditional generative adversarial network
    Bei Y.
    Wang Q.
    Cheng Z.
    Pan X.
    Yang M.
    Ding D.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 48 (01): : 45 - 52
  • [28] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [29] Scale-aware Conditional Generative Adversarial Network for Image Dehazing
    Sharma, Prasen Kumar
    Jain, Priyankar
    Sur, Arijit
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2344 - 2354
  • [30] Fiber bundle image restoration using Conditional Generative Adversarial Network
    Xu, Baoteng
    Liu, Jialin
    Zhou, Wei
    Xiong, Daxi
    Yang, Xibin
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565