Numerical simulation of precipitate evolution in ferritic-martensitic power plant steels

被引:52
|
作者
Prasad, B. S. Srinivas [1 ]
Rajkumar, V. B. [1 ]
Kumar, K. C. Hari [1 ]
机构
[1] Indian Inst Technol, Dept Met & Mat Engn, Madras 600036, Tamil Nadu, India
关键词
Steels; 9Cr-1Mo; Kinetics; Precipitation; MatCalc; Numerical simulation; MICROSTRUCTURAL STABILITY; KINETICS; SEQUENCES;
D O I
10.1016/j.calphad.2011.10.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermo-kinetic simulation of precipitate evolution during long-term thermal exposure in ferritic-martensitic heat-resistant power plant steels (P91 and P92) is carried out using MatCalc software, in combination with a Gibbs energy database and a mobility database for steels that come with MatCalc. MX and M23C6 are predicted to remain as major precipitates during long-term thermal exposure in these steels. Average size of MX precipitate is found to vary between 10 and 50 nm in both steels, while M23C6 exceeds 100 nm in the case of P91 after 1000,000 h of thermal exposure at 600 degrees C. The simulated precipitation sequence and precipitate size evolution during thermal exposure are in good agreement with available experimental data. It is expected that the calculations presented here give insight into long-term microstructural stability of ferritic-martensitic steels under service conditions, which is otherwise difficult to establish by experiments alone. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] Irradiation behavior of ferritic-martensitic 9-12%Cr steels
    Horsten, MG
    van Osch, EV
    Gelles, DS
    Hamilton, ML
    EFFECTS OF RADIATION ON MATERIALS: 19TH INTERNATIONAL SYMPOSIUM, 2000, 1366 : 579 - 593
  • [42] On the Cyclic Behaviour of Fusion Reactor Ferritic-Martensitic Steels at Intermediate Temperatures
    Avalos, Martina
    Alvarez-Armas, Iris
    Armas, Alberto F.
    Petersen, Claus
    MATERIALS TESTING, 2009, 51 (06) : 376 - 381
  • [43] Cyclic deformation and microstructural behaviour of reduced activation ferritic-martensitic steels
    Batista, M. N.
    Alvarez-Armas, I.
    Giordana, M. F.
    Herenu, S.
    Armas, A. F.
    MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (14) : 1826 - 1831
  • [44] FACTORS DETERMINING THE MODULUS OF RUPTURE OF BIPHASE FERRITIC-MARTENSITIC STEELS.
    Fonshtein, N.M.
    Metal Science and Heat Treatment, 1987, 29 (10) : 725 - 730
  • [45] Improvements in the Metallography of Ferritic-Martensitic Steels Through a Color Etching Procedure
    Mandal, Mantosh
    Aashranth, B.
    Samantaray, Dipti
    Vasudevan, M.
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2023, 12 (01) : 49 - 61
  • [46] Localized corrosion of magnetite on ferritic-martensitic steels exposed to supercritical water
    Tan, L.
    Allen, T. R.
    CORROSION SCIENCE, 2009, 51 (11) : 2503 - 2507
  • [47] THE DEVELOPMENT OF FERRITIC-MARTENSITIC STEELS WITH REDUCED LONG-TERM ACTIVATION
    EHRLICH, K
    KELZENBERG, S
    ROHRIG, HD
    SCHAFER, L
    SCHIRRA, M
    JOURNAL OF NUCLEAR MATERIALS, 1994, 212 : 678 - 683
  • [48] Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide
    Tan, L.
    Anderson, M.
    Taylor, D.
    Allen, T. R.
    CORROSION SCIENCE, 2011, 53 (10) : 3273 - 3280
  • [49] PRODUCTION OF COLD-ROLLED, FERRITIC-MARTENSITIC STEELS FOR FORMING.
    Golovanenko, S.A.
    Fonshtein, N.M.
    Bukreev, B.A.
    Shapovalov, A.P.
    Mukhin, Yu.A.
    Girina, O.A.
    Gruznov, A.K.
    Drobinskii, M.L.
    1600, (15):
  • [50] Numerical Research of Fracture Toughness of Aged Ferritic-Martensitic Steel
    Janulionis, Remigijus
    Dundulis, Gintautas
    Grybenas, Albertas
    METALS, 2020, 10 (12) : 1 - 13