Cluster analysis and clinical asthma phenotypes

被引:1496
|
作者
Haldar, Pranab [1 ]
Pavord, Ian D. [1 ]
Shaw, Dominic E. [1 ]
Berry, Michael A. [1 ]
Thomas, Michael [2 ]
Brightling, Christopher E. [1 ]
Wardlaw, Andrew I. [1 ]
Green, Ruth H. [1 ]
机构
[1] Inst Lung Hlth, Glenfield Hosp, Leicester LE3 9QP, Leics, England
[2] Univ Aberdeen, Dept Gen Practice, Aberdeen AB9 1FX, Scotland
基金
英国惠康基金;
关键词
taxonomy; corticosteroid response; multivariate classification;
D O I
10.1164/rccm.200711-1754OC
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Rationale Heterogeneity in asthma expression is multidimensional, including variability in clinical, physiologic, and pathologic parameters. Classification requires consideration of these disparate domains in a unified model. Objectives: To explore the application of a multivariate mathematical technique, k-means cluster analysis, for identifying distinct phenotypic groups. Methods: We performed k-means cluster analysis in three independent asthma populations. Clusters of a population managed in primary care (n = 184) with predominantly mild to moderate disease, were compared with a refractory asthma population managed in secondary care (n = 187). We then compared differences in asthma outcomes (exacerbation frequency and change in corticosteroid dose at 12 mo) between clusters in a third population of 68 subjects with predominantly refractory asthma, clustered at entry into a randomized trial comparing a strategy of minimizing eosinophilic inflammation (inflammation-guided strategy) with standard care. Measurements and Main Results: Two clusters (early-onset atopic and obese, noneosinophilic) were common to both asthma populations. Two clusters characterized by marked discordance between symptom expression and eosinophilic airway inflammation (early-onset symptom predominant and late-onset inflammation predominant) were specific to refractory asthma. Inflammation-guided management was superior for both discordant subgroups leading to a reduction in exacerbation frequency in the inflammation-predominant cluster (3.53 [SD, 1.18] vs. 0.38 [SD, 0.13] exacerbation/patient/yr, P = 0.002) and a dose reduction of inhaled corticosteroid in the symptom-predominant cluster (mean difference, 1,829 mu g beclomethasone equivalent/d [95% confidence interval, 307-3,349 mu g]; P = 0.02). Conclusions: Cluster analysis offers a novel multidimensional approach for identifying asthma phenotypes that exhibit differences in clinical response to treatment algorithms.
引用
收藏
页码:218 / 224
页数:7
相关论文
共 50 条
  • [41] Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study
    Loza, Matthew J.
    Djukanovic, Ratko
    Chung, Kian Fan
    Horowitz, Daniel
    Ma, Keying
    Branigan, Patrick
    Barnathan, Elliot S.
    Susulic, Vedrana S.
    Silkoff, Philip E.
    Sterk, Peter J.
    Baribaud, Frederic
    RESPIRATORY RESEARCH, 2016, 17
  • [42] Distinct asthma phenotypes with low maximal attainment of lung function on cluster analysis
    Bhargava, Smriti
    Holla, Amrutha D.
    Jayaraj, Biligere S.
    Praveena, AttahalliS
    Ravi, Sreenivasan
    Khurana, Sandhya
    Mahesh, Padukudru A.
    JOURNAL OF ASTHMA, 2021, 58 (01) : 26 - 37
  • [43] Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma
    Wu, Wei
    Bang, Seojin
    Bleecker, Eugene R.
    Castro, Mario
    Denlinger, Loren
    Erzurum, Serpil C.
    Fahy, John V.
    Fitzpatrick, Anne M.
    Gaston, Benjamin M.
    Hastie, Annette T.
    Israel, Elliot
    Jarjour, Nizar N.
    Levy, Bruce D.
    Mauger, David T.
    Meyers, Deborah A.
    Moore, Wendy C.
    Peters, Michael
    Phillips, Brenda R.
    Phipatanakul, Wanda
    Sorkness, Ronald L.
    Wenzel, Sally E.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (11) : 1358 - 1367
  • [44] Identification of Asthma Phenotypes in the Spanish MEGA Cohort Study Using Cluster Analysis
    Matabuena, Marcos
    Salgado, Francisco Javier
    Nieto-Fontarigo, Juan Jose
    Alvarez-Puebla, Maria J.
    Arismendi, Ebymar
    Barranco, Pilar
    Bobolea, Irina
    Caballero, Maria L.
    Canas, Jose Antonio
    Cardaba, Blanca
    Cruz, Maria Jesus
    Curto, Elena
    Dominguez-Ortega, Javier
    Luna, Juan Alberto
    Martinez-Rivera, Carlos
    Mullol, Joaquim
    Munoz, Xavier
    Rodriguez-Garcia, Javier
    Olaguibel, Jose Maria
    Picado, Cesar
    Plaza, Vicente
    Quirce, Santiago
    Rial, Manuel J.
    Romero-Mesones, Christian
    Sastre, Beatriz
    Soto-Retes, Lorena
    Valero, Antonio
    Valverde-Monge, Marcela
    Del Pozo, Victoria
    Sastre, Joaquin
    Gonzalez-Barcala, Francisco Javier
    ARCHIVOS DE BRONCONEUMOLOGIA, 2023, 59 (04): : 223 - 231
  • [45] Cluster analysis identifies characteristic phenotypes of asthma with accelerated lung function decline
    Sakagami, Takuro
    Hasegawa, Takashi
    Koya, Toshiyuki
    Furukawa, Toshiki
    Kawakami, Hidenori
    Kimura, Yosuke
    Hoshino, Yoshifumi
    Sakamoto, Hirotaka
    Shima, Kenjiro
    Kagamu, Hiroshi
    Suzuki, Ei-ichi
    Narita, Ichiei
    JOURNAL OF ASTHMA, 2014, 51 (02) : 113 - 118
  • [46] The Natural History of Asthma Phenotypes Identified by Cluster Analysis Looking for Chutes and Ladders
    Moore, Wendy C.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 188 (05) : 521 - 522
  • [47] Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study
    Matthew J. Loza
    Ratko Djukanovic
    Kian Fan Chung
    Daniel Horowitz
    Keying Ma
    Patrick Branigan
    Elliot S. Barnathan
    Vedrana S. Susulic
    Philip E. Silkoff
    Peter J. Sterk
    Frédéric Baribaud
    Respiratory Research, 17
  • [48] Noninvasive Analysis of the Sputum TranScriptome Discriminates Clinical Phenotypes of Asthma
    Yan, Xiting
    Chu, Jen-Hwa
    Gomez, Jose
    Koenigs, Maria
    Holm, Carole
    He, Xiaoxuan
    Perez, Mario F.
    Zhao, Hongyu
    Mane, Shrikant
    Martinez, Fernando D.
    Ober, Carole
    Nicolae, Dan L.
    Barnes, Kathleen C.
    London, Stephanie J.
    Gilliland, Frank
    Weiss, Scott T.
    Raby, Benjamin A.
    Cohn, Lauren
    Chupp, Geoffrey L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191 (10) : 1116 - 1125
  • [49] Noninvasive Analysis of the Sputum Transcriptome Discriminates Clinical Phenotypes of Asthma
    Yan, Xiting
    Chu, Jen-Hwa
    Gomez, Jose
    Koenigs, Maria
    Holm, Carole
    He, Xiaoxuan
    Perez, Mario F.
    Zhao, Hongyu
    Mane, Shrikant
    Martinez, Fernando D.
    Ober, Carole
    Nicolae, Dan L.
    Barnes, Kathleen C.
    London, Stephanie J.
    Gilliland, Frank
    Weiss, Scott T.
    Raby, Benjamin A.
    Cohn, Lauren
    Chupp, Geoffrey L.
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2016, 13 : S104 - S105
  • [50] Clinical COPD phenotypes identified by cluster analysis: validation with mortality
    Burgel, Pierre-Regis
    Roche, Nicolas
    Paillasseur, Jean-Louis
    Tillie-Leblond, Isabelle
    Chanez, Pascal
    Escamilla, Roger
    Court-Fortune, Isabelle
    Perez, Thierry
    Carre, Philippe
    Caillaud, Denis
    EUROPEAN RESPIRATORY JOURNAL, 2012, 40 (02) : 495 - 496