Cosmic-ray time scales using radioactive clocks

被引:8
|
作者
Yanasak, NE
Wiedenbeck, ME
Binns, WR
Christian, ER
Cummings, AC
Davis, AJ
George, JS
Hink, PL
Israel, MH
Leske, RA
Lijowski, M
Mewaldt, RA
Stone, EC
von Rosenvinge, TT
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Washington Univ, St Louis, MO 63130 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] CALTECH, Pasadena, CA 91125 USA
来源
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0273-1177(01)00114-4
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Radionuclides in the galactic cosmic rays serve as chronometers for measuring the characteristic time of physical processes affecting cosmic ray energy spectra and composition. The radionuclide Ni-59, present in the ejecta of supernovae, will decay to Co-59 via electron-capture with a halflife of T-1/2 = 7.6 x 10(4) yr. However, if the cosmic ray acceleration time scale is shorter than the decay halflife, 59Ni will become fully-stripped of electrons and will be present in the cosmic rays. Abundances of cosmic ray Ni-59 and Co-59 measured with the Cosmic Ray Isotope Spectrometer (CRIS) are consistent with the decay of all source Ni-59, implying an acceleration time delay > 10(5) yr. Abundances of the beta -decay radioactive secondaries, produced by fragmentation of the cosmic rays during transport in the interstellar medium (ISM), depend on the time scales for spallation and escape from the Galaxy. Consequently, measurement of these abundances can be used to derive the galactic confinement time, tau (esc) for cosmic rays. Using the abundances of the beta -decay species Be-10, Al-26, Cl-36, and Mn-54 measured by CRIS, we find a confinement time tau (esc) similar to 15 Myr. Published by Elsevier Science Ltd on behalf of COSPAR.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 50 条
  • [31] Cross-calibrating the energy scales of cosmic-ray experiments using a portable radio array
    Mulrey, K.
    Buitink, S.
    Corstanje, A.
    de Vries, K. D.
    Falcke, H.
    Hare, B. M.
    Horandel, J. R.
    Huege, T.
    Krampah, G. K.
    Mitra, P.
    Nelles, A.
    Pandya, H.
    Rachen, J. P.
    Santiago, E.
    Scholten, O.
    Stanley, R.
    ter Veen, S.
    Thoudam, S.
    Trinh, T. N. G.
    Winchen, T.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [32] ISOTOPIC COMPOSITION OF GALACTIC COSMIC-RAY BERYLLIUM AND COSMIC-RAY AGE
    GARCIAMUNOZ, M
    MASON, GM
    SIMPSON, JA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (04): : 567 - 567
  • [33] THE COSMIC-RAY ALBEDO
    TREIMAN, SB
    PHYSICAL REVIEW, 1953, 91 (04): : 957 - 959
  • [34] COSMIC-RAY NUCLEI
    SHAPIRO, MM
    ASTRONAUTICS & AERONAUTICS, 1968, 6 (07): : 6 - &
  • [35] COSMIC-RAY VISCOSITY
    EARL, JA
    JOKIPII, JR
    MORFILL, G
    ASTROPHYSICAL JOURNAL, 1988, 331 (02): : L91 - L94
  • [36] Time evolution of cosmic-ray modified MHD shocks
    Jones, T. W.
    Kang, H.
    Proceedings of the 29th International Cosmic Ray Conference, Vol 3: OG1, 2005, : 269 - 272
  • [37] Cosmic-ray astrochemistry
    Indriolo, Nick
    McCall, Benjamin J.
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (19) : 7763 - 7773
  • [38] COSMIC-RAY NEUTRINOS
    REINES, F
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (04): : 485 - &
  • [39] COSMIC-RAY BAYS
    MCDONALD, KL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (04): : 582 - 582
  • [40] Cosmic-ray particles
    Locher, GL
    PHYSICAL REVIEW, 1932, 39 (06): : 883 - 888