Incorporating high-throughput proteomics experiments into structural biology pipelines: Identification of the low-hanging fruits

被引:12
|
作者
Pache, Roland A. [1 ,2 ]
Aloy, Patrick [1 ,2 ,3 ]
机构
[1] IRB, Barcelona 08028, Spain
[2] BSC, Barcelona, Spain
[3] ICREA, Barcelona, Spain
关键词
high-throughput proteomics; macromolecular complexes; structural biology; structural genomics; target selection;
D O I
10.1002/pmic.200700966
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The last years have seen the emergence of many large-scale proteomics initiatives that have identified thousands of new protein interactions and macromolecular assemblies. However, unfortunately, only a few among the discovered complexes meet the high-quality standards required to be promptly used in structural studies. This has thus created an increasing gap between the number of known protein interactions and complexes and those for which a high-resolution 3-D structure is available. Here, we present and validate a computational strategy to distinguish those complexes found in high-throughput affinity purification experiments that will stand the best chances to successfully express, purify and crystallize with little further intervention. Our method suggests that there are some 50 complexes recently discovered in yeast that could readily enter the structural biology pipelines.
引用
收藏
页码:1959 / 1964
页数:6
相关论文
共 50 条
  • [31] Hit-Gel: Streamlining in-gel protein digestion for high-throughput proteomics experiments
    Corné Swart
    Silvia Martínez-Jaime
    Michal Gorka
    Kerstin Zander
    Alexander Graf
    Scientific Reports, 8
  • [32] A simulation framework for correlated count data of features subsets in high-throughput sequencing or proteomics experiments
    Kruppa, Jochen
    Kramer, Frank
    Beissbarth, Tim
    Jung, Klaus
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2016, 15 (05) : 401 - 414
  • [33] ExSTA: External Standard Addition Method for Accurate High-Throughput Quantitation in Targeted Proteomics Experiments
    Mohammed, Yassene
    Pan, Jingxi
    Zhang, Suping
    Han, Jun
    Borchers, Christoph H.
    PROTEOMICS CLINICAL APPLICATIONS, 2018, 12 (02)
  • [34] Hit-Gel: Streamlining in-gel protein digestion for high-throughput proteomics experiments
    Swart, Corne
    Martinez-Jaime, Silvia
    Gorka, Michal
    Zander, Kerstin
    Graf, Alexander
    SCIENTIFIC REPORTS, 2018, 8
  • [35] Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization
    Totir, Monica
    Echols, Nathaniel
    Nanao, Max
    Gee, Christine L.
    Moskaleva, Alisa
    Gradia, Scott
    Iavarone, Anthony T.
    Berger, James M.
    May, Andrew P.
    Zubieta, Chloe
    Alber, Tom
    PLOS ONE, 2012, 7 (02):
  • [36] Identification of Proteins Involved in Human Sperm Motility Using High-Throughput Differential Proteomics
    Amaral, Alexandra
    Paiva, Carla
    Parrinello, Claudio Attardo
    Estanyol, Josep Maria
    Ballesca, Josep Lluis
    Ramalho-Santos, Joao
    Oliva, Rafael
    JOURNAL OF PROTEOME RESEARCH, 2014, 13 (12) : 5670 - 5684
  • [37] High-throughput automated platform for nuclear magnetic resonance-based structural proteomics
    Vinarov, DA
    Markley, JL
    EXPERT REVIEW OF PROTEOMICS, 2005, 2 (01) : 49 - 55
  • [38] Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis
    Au, K.
    Berrow, N. S.
    Blagova, E.
    Boucher, I. W.
    Boyle, M. P.
    Brannigan, J. A.
    Carter, L. G.
    Dierks, T.
    Folkers, G.
    Grenha, R.
    Harlos, K.
    Kaptein, R.
    Kalliomaa, A. K.
    Levdikov, V. M.
    Meier, C.
    Milioti, N.
    Moroz, O.
    Muller, A.
    Owens, R. J.
    Rzechorzek, N.
    Sainsbury, S.
    Stuart, D. I.
    Walter, T. S.
    Waterman, D. G.
    Wilkinson, A. J.
    Wilson, K. S.
    Zaccai, N.
    Esnouf, Robert M.
    Fogg, Mark J.
    ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2006, 62 : 1267 - 1275
  • [39] APSY-NMR for protein backbone assignment in high-throughput structural biology
    Samit Kumar Dutta
    Pedro Serrano
    Andrew Proudfoot
    Michael Geralt
    Bill Pedrini
    Torsten Herrmann
    Kurt Wüthrich
    Journal of Biomolecular NMR, 2015, 61 : 47 - 53
  • [40] SPINE bioinformatics and data-management aspects of high-throughput structural biology
    Albeck, S.
    Alzari, P.
    Andreini, C.
    Banci, L.
    Berry, I. M.
    Bertini, I.
    Cambillau, C.
    Canard, B.
    Carter, L.
    Cohen, S. X.
    Diprose, J. M.
    Dym, O.
    Esnouf, R. M.
    Felder, C.
    Ferron, F.
    Guillemot, F.
    Hamer, R.
    Ben Jelloul, M.
    Laskowski, R. A.
    Laurent, T.
    Longhi, S.
    Lopez, R.
    Luchinat, C.
    Malet, H.
    Mochel, T.
    Morris, R. J.
    Moulinier, L.
    Oinn, T.
    Pajon, A.
    Peleg, Y.
    Perrakis, A.
    Poch, O.
    Prilusky, J.
    Rachedi, A.
    Ripp, R.
    Rosato, A.
    Silman, I.
    Stuart, D. I.
    Sussman, J. L.
    Thierry, J. -C.
    Thompson, J. D.
    Thornton, J. M.
    Unger, T.
    Vaughan, B.
    Vranken, W.
    Watson, J. D.
    Whamond, G.
    Henrick, K.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2006, 62 : 1184 - 1195