A modified, sparsity promoting, Gauss-Newton algorithm for seismic waveform inversion

被引:6
|
作者
Herrmann, Felix J. [1 ]
Li, Xiang [1 ]
Aravkin, Aleksandr Y. [1 ]
van Leeuwen, Tristan [1 ]
机构
[1] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V5Z 1M9, Canada
来源
WAVELETS AND SPARSITY XIV | 2011年 / 8138卷
关键词
Seismic imaging; waveform inversion; sparsity; curvelets; Gauss-Newton; GRADIENT;
D O I
10.1117/12.893861
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Images obtained from seismic data are used by the oil and gas industry for geophysical exploration. Cutting-edge methods for transforming the data into interpretable images are moving away from linear approximations and high-frequency asymptotics towards Full Waveform Inversion (FWI), a nonlinear data-fitting procedure based on full data modeling using the wave-equation. The size of the problem, the nonlinearity of the forward model, and ill-posedness of the formulation all contribute to a pressing need for fast algorithms and novel regularization techniques to speed up and improve inversion results. In this paper, we design a modified Gauss-Newton algorithm to solve the PDE-constrained optimization problem using ideas from stochastic optimization and compressive sensing. More specifically, we replace the Gauss-Newton subproblems by randomly subsampled, l(1) regularized subproblems. This allows us us significantly reduce the computational cost of calculating the updates and exploit the compressibility of wavefields in Curvelets. We explain the relationships and connections between the new method and stochastic optimization and compressive sensing (CS), and demonstrate the efficacy of the new method on a large-scale synthetic seismic example.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Discontinuous Galerkin Gauss-Newton Inversion for Electromagnetic Imaging
    Jeffrey, Ian
    LoVetri, Joe
    2016 17TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM), 2016,
  • [22] Modified Gauss-Newton Algorithms under Noise
    Pillutla, Krishna
    Roulet, Vincent
    Kakade, Sham M.
    Harchaoui, Zaid
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 51 - 55
  • [23] CONVERGENCE ANALYSIS OF THE GENERAL GAUSS-NEWTON ALGORITHM
    SCHABACK, R
    NUMERISCHE MATHEMATIK, 1985, 46 (02) : 281 - 309
  • [24] Modified Gauss-Newton Algorithm for Evaluation of Full Lightning Impulse Voltage Parameters
    Jamroen, Panuwat
    Yoosorn, Poom
    Waengsothorn, Suthasinee
    Yutthagowith, Peerawut
    SENSORS AND MATERIALS, 2021, 33 (07) : 2471 - 2480
  • [25] A MULTI-RESPONSE GAUSS-NEWTON ALGORITHM
    BATES, DM
    WATTS, DG
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1984, 13 (05) : 705 - 715
  • [26] An enhanced Gauss-Newton inversion algorithm using a dual-qptimal grid approach
    Abubakar, Aria
    Habashy, Tarek M.
    Druskin, Vladimir L.
    Knizhnerman, Leonid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06): : 1419 - 1427
  • [27] A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion
    Loke, MH
    Dahlin, T
    JOURNAL OF APPLIED GEOPHYSICS, 2002, 49 (03) : 149 - 162
  • [28] Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion
    Pan, Wenyong
    Innanen, Kristopher A.
    Margrave, Gary F.
    Fehler, Michael C.
    Fang, Xinding
    Li, Junxiao
    GEOPHYSICS, 2016, 81 (05) : R275 - R291
  • [29] Three-dimensional Gauss-Newton constant-Q viscoelastic full-waveform inversion of near-surface seismic wavefields
    Mirzanejad, Majid
    Tran, Khiem T.
    Wang, Yao
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 231 (03) : 1767 - 1785
  • [30] 3D Multiplicative Regularized Gauss-Newton Inversion
    Abubakar, Aria
    Liu, Jianguo
    Habashy, Tarek
    Zaslavsky, Mike
    Druskin, Vladimir
    Pan, Guangdong
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 240 - 243