Compressive strain induced dynamical stability of monolayer 1T-MX2 (M = Mo, W; X = S, Se)

被引:14
|
作者
Li, Xiaoyong [1 ]
Wu, Musheng [1 ]
Xu, Bo [1 ]
Liu, Ruifan [1 ]
Ouyang, Chuying [1 ]
机构
[1] Jiangxi Normal Univ, Dept Phys, Lab Computat Mat Phys, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
lattice dynamical property; strain; phonon; density functional perturbation theory; transition metal dichalcogenides; STRUCTURAL PHASE-TRANSITIONS; VALLEY POLARIZATION; ATOMIC MECHANISM; LAYER MOS2; NANOSHEETS; PIEZOELECTRICITY; HETEROSTRUCTURES; STABILIZATION; MOTE2;
D O I
10.1088/2053-1591/aa9762
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The lattice dynamical properties of 1T-MX2 (M = Mo, W; X = S, Se) under different strains were studied by using density functional perturbation theory method. Our results show that all MX2 with 1T phase in our calculations are dynamical instable under zero strain or tensile strain as obvious imaginary frequencies (soft modes) exist. When 3% biaxial compressive strains are applied, the imaginary frequencies remain except that the absolute values of maximum imaginary frequency decrease. With the increase of compressive strain to be 6%, 1T-MoS2, 1T-MoSe2, 1T-WS2 become stable, whereas 1T-WSe2 has small imaginary frequencies. When biaxial compressive strain reaches 9%, all 1T-MX2 are dynamical stable without imaginary frequencies in the phonon dispersion curves. Energy band structures show that all 1T-MX2 are metallic, regardless of zero strain or compressive strain. Therefore, compressive strain could be a practical approach to enhance the stability of 1T-MX2 while maintaining the metallic property.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High Anisotropic Optoelectronics in Monolayer Binary M8X12 (M = Mo, W; X = S, Se, Te)
    Peng, Yi
    Zhu, Qianqian
    Xu, Wangping
    Cao, Juexian
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (23) : 27056 - 27062
  • [42] Defect engineering of 1T′ MX 2 (M = Mo, W and X = S, Se) transition metal dichalcogenide-based electrocatalyst for alkaline hydrogen evolution reaction
    Ogunkunle, Samuel Akinlolu
    Bouzid, Assil
    Hinsch, Jack Jon
    Allen, Oscar J.
    White, Jessica Jein
    Bernard, Samuel
    Wu, Zhenzhen
    Zhu, Yong
    Wang, Yun
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (14)
  • [43] First-principles investigation on the interface of transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se) monolayer on Al2O3(0001)
    Pan, Rui
    Fan, Xiao-Li
    Zhang, Han
    Yang, Yi
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 122 : 118 - 125
  • [44] Exploring electronic features in monolayer and bilayer MX2 (M = Hf, Zr; X = S, Se) structures under shear strain
    Bao, Jinlin
    Liu, Guili
    Yang, Lu
    Li, Feng
    Yang, Zhonghua
    Zhang, Guoying
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [45] Optical spectrum and excitons in bulk and monolayer MX2 (M=Zr, Hf; X=S, Se)
    Abdulsalam, Mahmud
    Joubert, Daniel P.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (04): : 705 - 711
  • [47] Thickness dependence of solar cell efficiency in transition metal dichalcogenides MX2 (M: Mo, W; X: S, Se, Te)
    Ozdemir, Burak
    Barone, Veronica
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 212
  • [48] High Electrocatalytic Activity of Defected MX2/Graphene Heterostructures (M = Mo, W; X = S, Se) for Hydrogen Evolution Reaction
    Chen, Xing
    Liu, Yaqi
    Gao, Weicheng
    Yang, Guang
    Qureshi, Ali Hamza
    Chen, Ming
    Yao, Xiaojing
    Zhou, Min
    Zhang, Xiuyun
    Liu, Yongjun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (28): : 15292 - 15300
  • [49] Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se)
    Roldan, Rafael
    Silva-Guillen, Jose A.
    Pilar Lopez-Sancho, M.
    Guinea, Francisco
    Cappelluti, Emmanuele
    Ordejon, Pablo
    ANNALEN DER PHYSIK, 2014, 526 (9-10) : 347 - +
  • [50] Temperature dependant electronic charge transport characteristics at MX2 (M = Mo, W; X = S, Se)/Si heterojunction devices
    C. K. Sumesh
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 4117 - 4127