Monte-Carlo orbit/full wave simulation of fast Alfven wave (FW) damping on resonant ions in Tokamaks

被引:0
|
作者
Choi, M [1 ]
Chan, VS [1 ]
Tang, V [1 ]
Bonoli, P [1 ]
Pinsker, RI [1 ]
Wright, J [1 ]
机构
[1] Gen Atom, San Diego, CA 92186 USA
来源
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To simulate the resonant interaction of fast Alfven wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 22 条