Physics-Based Potentials for Coarse-Grained Modeling of Protein DNA Interactions

被引:13
|
作者
Yin, Yanping [1 ]
Sieradzan, Adam K. [1 ,2 ]
Liwo, Adam [2 ]
He, Yi [1 ]
Scheraga, Harold A. [1 ]
机构
[1] Cornell Univ, Baker Lab Chem & Chem Biol, Ithaca, NY 14850 USA
[2] Univ Gdansk, Fac Chem, PL-80308 Gdansk, Poland
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
UNRES FORCE-FIELD; ACID SIDE-CHAINS; STRUCTURE PREDICTION; ANALYTICAL FORMULAS; MEAN FORCE; SIMULATIONS; OPTIMIZATION; MUTATIONS; DYNAMICS;
D O I
10.1021/ct5009558
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physics-based potentials have been developed for the interactions between proteins and DNA for simulations with the UNRES + NARES-2P force field. The mean-field interactions between a protein and a DNA molecule can be divided into eight categories: (1) nonpolar side chain-DNA base, (2) polar uncharged side chain-DNA base, (3) charged side chain-DNA base, (4) peptide group-phosphate group, (5) peptide group-DNA base, (6) nonpolar side chain-phosphate group, (7) polar uncharged side chain-phosphate group, and (8) charged side chain-phosphate group. Umbrella-sampling molecular dynamics simulations in explicit TIP3P water using the AMBER force field were carried out to determine the potentials of mean force (PMF) for all 105 pairs of interacting components. Approximate analytical expressions for the mean-field interaction energy of each pair of the different kinds of interacting molecules were then fitted to the PMFs to obtain the parameters of the analytical expressions. These analytical expressions can reproduce satisfactorily the PMF curves corresponding to different orientations of the interacting molecules. The results suggest that the physics-based mean-field potentials of amino acid-nucleotide interactions presented here can be used in coarse-grained simulation of protein-DNA interactions.
引用
收藏
页码:1792 / 1808
页数:17
相关论文
共 50 条
  • [21] Coarse-grained modeling of interactions of lipid bilayers with supports
    Hoopes, Matthew I.
    Deserno, Markus
    Longo, Margie L.
    Faller, Roland
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (17):
  • [22] Coarse-grained modeling of drug-membrane interactions
    Melo, Manuel N.
    Sengupta, Durba
    Marrink, Siewert-Jan
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 : 112 - 112
  • [24] MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing
    Honorato, Rodrigo, V
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2019, 6
  • [25] Coarse-grained modeling of DNA-RNA hybrids
    Ratajczyk, Eryk J.
    Sulc, Petr
    Turberfield, Andrew J.
    Doye, Jonathan P. K.
    Louis, Ard A.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (11):
  • [26] Bottom-Up Coarse-Grained Modeling of DNA
    Sun, Tiedong
    Minhas, Vishal
    Korolev, Nikolay
    Mirzoev, Alexander
    Lyubartsev, Alexander P.
    Nordenskiold, Lars
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [27] Determination of Protein Coarse-Grained Potentials by Machine Learning Approaches
    Vazquez, Eric
    Thomas, Rachel
    Zamora-Resendiz, Rafael
    Tang, Yu-Hang
    Watanabe, Masakatsu
    Crivelli, Silvia
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 180A - 180A
  • [28] UNRES-GPU for physics-based coarse-grained simulations of protein systems at biological time- and size-scales
    Ocetkiewicz, Krzysztof M.
    Czaplewski, Cezary
    Krawczyk, Henryk
    Lipska, Agnieszka G.
    Liwo, Adam
    Proficz, Jerzy
    Sieradzan, Adam K.
    Czarnul, Pawel
    BIOINFORMATICS, 2023, 39 (06)
  • [29] Coarse-grained modeling of allosteric regulation in protein receptors
    Balabin, Ilya A.
    Yang, Weitao
    Beratan, David N.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) : 14253 - 14258
  • [30] Coarse-grained modeling of micelle/protein complexes.
    Benz, RW
    Tobias, DJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U678 - U678