Singquandle shadows and singular knot invariants

被引:4
|
作者
Ceniceros, Jose [1 ]
Churchill, Indu R. [2 ]
Elhamdadi, Mohamed [3 ]
机构
[1] Hamilton Coll, Dept Math & Stat, Coll Hill Rd, Clinton, NY 13323 USA
[2] SUNY Coll Oswego, Dept Math, Oswego, NY 13126 USA
[3] Univ S Florida, Dept Math & Stat, 4202 Fowler Ave, Tampa, FL 33620 USA
关键词
Quandle polynomial; singular knots and links; singquandle polynomial;
D O I
10.4153/S0008439521000837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce shadow structures for singular knot theory. Precisely, we define two invariants of singular knots and links. First, we introduce a notion of action of a singquandle on a set to define a shadow counting invariant of singular links which generalize the classical shadow colorings of knots by quandles. We then define a shadow polynomial invariant for shadow structures. Lastly, we enhance the shadow counting invariant by combining both the shadow counting invariant and the shadow polynomial invariant. Explicit examples of computations are given.
引用
收藏
页码:770 / 787
页数:18
相关论文
共 50 条
  • [21] KNOT POLYNOMIALS AND VASSILIEV INVARIANTS
    BIRMAN, JS
    LIN, XS
    INVENTIONES MATHEMATICAE, 1993, 111 (02) : 225 - 270
  • [22] Knot invariants for rail knotoids
    Kodokostas, Dimitrios
    Lambropoulou, Sofia
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (06)
  • [23] Holomorphic disks and knot invariants
    Ozsváth, P
    Szabó, Z
    ADVANCES IN MATHEMATICS, 2004, 186 (01) : 58 - 116
  • [24] Knot invariants and topological strings
    Ooguri, H
    Vafa, C
    NUCLEAR PHYSICS B, 2000, 577 (03) : 419 - 438
  • [25] Hidden structures of knot invariants
    Sleptsov, Alexey
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (29):
  • [26] Cocyclic Quasoid Knot Invariants
    Ph. G. Korablev
    Siberian Mathematical Journal, 2020, 61 : 271 - 289
  • [27] Knot Invariants in Geodesic Flows
    P. M. Akhmet’ev
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 42 - 55
  • [28] Noncompact quantum knot invariants
    Dimofte, T. D.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 192-93 : 136 - 137
  • [29] Knot Invariants in Geodesic Flows
    Akhmet'ev, P. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 308 (01) : 42 - 55
  • [30] String theory and knot invariants
    Marino, Marcos
    PROSPECTS IN MATHEMATICAL PHYSICS, 2007, 437 : 199 - 207