Numerical investigation into laser-based powder bed fusion of cantilevers produced in 300-grade maraging steel

被引:15
|
作者
De Baere, David [1 ]
Moshiri, Mandana [1 ]
Smolej, Lukasz [1 ]
Hattel, Jesper H. [1 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, Prod Torvet,Bldg 425, DK-2800 Lyngby, Denmark
关键词
LPBF; Maraging steel; Numerical modelling; Residual stress; Laser absorption coefficient; FINITE-ELEMENT-ANALYSIS; MECHANICAL-PROPERTIES; MICROSTRUCTURAL EVOLUTION; AGING TIME; TEMPERATURE; PREDICTION; SIMULATION; DISTORTION; BEHAVIOR; TRANSFORMATION;
D O I
10.1016/j.addma.2021.102560
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser-based powder bed fusion of 300-grade maraging steel allows the production of parts with a high hardness, which improves the service life and wear resistance of tooling or mould insert produced from this material. The material typically consists of a martensitic matrix material, with retained austenite and nano-precipitation. The transformation from austenite to martensite has been linked to compressive stresses at the surface of parts produced in 300-grade maraging steel. In a cantilever beam-type part, this means that after cutting from the base-plate, the part will bend downwards, which is the opposite direction from the deformation found in most other materials after additive manufacturing. One way to gain insight into processing 300-grade maraging steel, while limiting the number of test samples that need to be printed, is by means of a numerical model. Using previously established models, additive manufacturing of a cantilever part in 300-grade maraging steel is simulated. Inclusion of the transformation from austenite to martensite into a numerical simulation of the laser-based powder bed fusion revealed the origin of the compressive stress at the surface of a simple cantilever beam-type sample. Additionally, changing the effective laser power through the laser absorptivity shows that the behaviour of the post-cutting deformation flips as compared to more conventional materials. Information about the laser absorption coefficient is rare, while it can greatly affect the results of a simulation. It is included in the presented result through the effective laser power, which is the product of the input laser power and laser absorption coefficient. When the effective laser power is changed from 95 W to 47.5 W, the cantilever bends upwards rather than downwards after release from the base plate. The results demonstrate the major influence played by the laser absorption coefficient on the simulation, an aspect to which little attention is paid in literature, but is proven to be one of the main factors to determine the component distortions after the laser-based powder bed fusion process.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion (LPBF)
    Kannan, Rangasayee
    Leonard, Donovan N.
    Nandwana, Peeyush
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 817
  • [22] Effect of Process Parameters on Powder Bed Fusion Maraging Steel 300: A Review
    Rao B.S.
    Rao T.B.
    Lasers in Manufacturing and Materials Processing, 2022, 9 (3) : 338 - 375
  • [23] The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel
    Krol, Mariusz
    Snopinski, Przemyslaw
    Czech, Adam
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (02) : 1011 - 1018
  • [24] The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel
    Mariusz Król
    Przemysław Snopiński
    Adam Czech
    Journal of Thermal Analysis and Calorimetry, 2020, 142 : 1011 - 1018
  • [25] An investigation into the effect of CoCrMo powder characteristics on the powder bed density in laser-based powder bed fusion units
    Kloppers, Cornelius P.
    de Beer, Deon J.
    RAPID PROTOTYPING JOURNAL, 2024, 30 (11) : 335 - 343
  • [26] Effect of duplex surface treatment on the impact properties of maraging steel produced by laser powder bed fusion
    Tekin, T.
    Maines, L.
    Naclerio, F.
    Ipek, R.
    Molinari, A.
    POWDER METALLURGY, 2024, 67 (4-5) : 219 - 227
  • [27] Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review
    Kizhakkinan, Umesh
    Seetharaman, Sankaranarayanan
    Raghavan, Nagarajan
    Rosen, David W.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (11):
  • [28] Effect of Energy Density on the Mechanical Properties of 1.2709 Maraging Steel Produced by Laser Powder Bed Fusion
    Hatos, Istvan
    Hargitai, Hajnalka
    Fekete, Gusztav
    Fekete, Imre
    MATERIALS, 2024, 17 (14)
  • [29] Fatigue Behavior of Hybrid Components Containing Maraging Steel Parts Produced by Laser Powder Bed Fusion
    Santos, Luis
    de Jesus, Joel
    Borrego, Luis
    Ferreira, Jose A. M.
    Fernandes, Rui F.
    da Costa, Jose D. M.
    Capela, Carlos
    METALS, 2021, 11 (05)
  • [30] Processability of a Hot Work Tool Steel Powder Mixture in Laser-Based Powder Bed Fusion
    Hantke, Nick
    Grosswendt, Felix
    Strauch, Anna
    Fechte-Heinen, Rainer
    Roettger, Arne
    Theisen, Werner
    Weber, Sebastian
    Sehrt, Jan Torsten
    MATERIALS, 2022, 15 (07)