Lightweight Image Super-Resolution Based on Re-Parameterization and Self-Calibrated Convolution

被引:1
|
作者
Zhang, Sufan [1 ]
Chen, Xi [1 ]
Huang, Xingwei [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
关键词
NETWORK;
D O I
10.1155/2022/8628402
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Image super-resolution technique can improve image quality by increasing image clarity, bringing a better user experience in real production scenarios. However, existing convolutional neural network methods usually have very deep network layers and a large number of parameters, which causes feature information to be lost as the network deepens, and models with a large numbers of parameters are not suitable for deploying on resource-constrained mobile devices. To address the above problems, we propose a novel lightweight image super-resolution network (RepSCN) based on re-parameterization and self-calibration convolution. Specifically, to reduce the computational cost while capturing more high-frequency details, we designed a re-parameterization distillation block (RepDB) and a self-calibrated distillation block (SCDB). They can improve the reconstruction results by aggregating the local distilled feature information under different receptive fields without introducing extra parameters. On the other hand, the positional information of the image is also crucial for super-resolution reconstruction. Nevertheless, existing lightweight SR methods mainly adopt the channel attention mechanism, which ignores the importance of positional information. Therefore, we introduce a lightweight coordinate attention mechanism (CAM) at the end of RepDB and SCDB to enhance the feature representation at both spatial and channel levels. Numerous experiments have shown that our network has better reconstruction performance with reduced parameters than other classical lightweight super-resolution models.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lightweight brain MR image super-resolution using 3D convolution
    Kim, Young Beom
    Van Le, The
    Lee, Jin Young
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8785 - 8795
  • [32] Lightweight brain MR image super-resolution using 3D convolution
    Young Beom Kim
    The Van Le
    Jin Young Lee
    Multimedia Tools and Applications, 2024, 83 : 8785 - 8795
  • [33] Deep Convolution Modulation for Image Super-Resolution
    Huang, Yuanfei
    Li, Jie
    Hu, Yanting
    Huang, Hua
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3647 - 3662
  • [34] RepNet: A Lightweight Human Pose Regression Network Based on Re-Parameterization
    Zhang, Xinjing
    Zhou, Qixun
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [35] Transformer-based image super-resolution and its lightweight
    Zhang, Dongxiao
    Qi, Tangyao
    Gao, Juhao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (26) : 68625 - 68649
  • [36] Lightweight Wavelet-Based Transformer for Image Super-Resolution
    Ran, Jinye
    Zhang, Zili
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 368 - 382
  • [37] Lightweight Reference-Based Video Super-Resolution Using Deformable Convolution
    Miyazaki, Tomo
    Guo, Zirui
    Omachi, Shinichiro
    INFORMATION, 2024, 15 (11)
  • [38] Lightweight video super-resolution based on hybrid spatio-temporal convolution
    Xia, Zhenping
    Chen, Hao
    Zhang, Yuning
    Cheng, Cheng
    Hu, Fuyuan
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (16): : 2564 - 2576
  • [39] Review of Research on Lightweight Image Super-Resolution
    Zhu, Xinfeng
    Song, Jian
    Computer Engineering and Applications, 2024, 60 (16) : 49 - 60
  • [40] Lightweight image super-resolution with enhanced CNN
    Tian, Chunwei
    Zhuge, Ruibin
    Wu, Zhihao
    Xu, Yong
    Zuo, Wangmeng
    Chen, Chen
    Lin, Chia-Wen
    KNOWLEDGE-BASED SYSTEMS, 2020, 205