Hermitian Yang-Mills-Higgs metrics on complete Kahler manifolds

被引:0
|
作者
Xi, Z [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, first, we will investigate the Dirichlet problem for one type of vortex equation, which generalizes the well-known Hermitian Einstein equation. Secondly, we will give existence results for solutions of these vortex equations over various complete noncompact Kahler manifolds.
引用
收藏
页码:871 / 896
页数:26
相关论文
共 50 条
  • [41] Stability and energy identity for Yang-Mills-Higgs pairs
    Han, Xiaoli
    Jin, Xishen
    Wen, Yang
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)
  • [42] Isolated Singularities of Yang-Mills-Higgs Fields on Surfaces
    Chen, Bo
    Song, Chong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (01) : 551 - 581
  • [44] Thermalization and Lyapunov exponents in Yang-Mills-Higgs theory
    Heinz, U
    Hu, CR
    Leupold, S
    Matinyan, SG
    Muller, B
    PHYSICAL REVIEW D, 1997, 55 (04): : 2464 - 2476
  • [45] EXACT YANG-MILLS-HIGGS MONOPOLES .1.
    LEE, SC
    PHYSICAL REVIEW D, 1981, 24 (08): : 2200 - 2208
  • [46] HEAT FLOW FOR YANG-MILLS-HIGGS FIELDS, PARTⅡ
    FANG YI HONG MINCHUN Centre for Mathematica and its Applications School of Mathematical Sciences The Australian National University Canberra ACT Australia
    ChineseAnnalsofMathematics, 2001, (02) : 211 - 222
  • [47] YANG-MILLS-HIGGS THEORY ON A COMPACT RIEMANN SURFACE
    NOGUCHI, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (10) : 2343 - 2346
  • [48] Quantum Bound States in Yang-Mills-Higgs Theory
    Boulton, Lyonell
    Schroers, Bernd J.
    Smedley-Williams, Kim
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (01) : 261 - 287
  • [49] Yang-Mills-Higgs models with higher order derivatives
    Polonyi, Janos
    Siwek, Alicja
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [50] The boundary value problem for Yang-Mills-Higgs fields
    Ai, Wanjun
    Song, Chong
    Zhu, Miaomiao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)