Dirac Operators with Singular Potentials Supported on Unbounded Surfaces in R3

被引:0
|
作者
Rabinovich, V. S. [1 ]
机构
[1] Inst Politecn Natl, ESIME Zacatenco, Mexico City, DF, Mexico
关键词
3D Dirac operators; singular potentials; self-adjointness; essential spectrum;
D O I
10.1134/S0016266321030084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the self-adjointness and essential spectrum of 3D Dirac operators with bounded variable magnetic and electrostatic potentials and with singular delta-type potentials with supports on uniformly regular unbounded surfaces Sigma in R-3.
引用
收藏
页码:245 / 249
页数:5
相关论文
共 50 条
  • [21] Singular Integral Operators Supported in Higher Dimensional Surfaces
    Ahmad Al-Salman
    Mediterranean Journal of Mathematics, 2023, 20
  • [22] HOMOGENEOUS DIFFERENTIAL OPERATORS ON R3
    UNTERBER.A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (19): : 844 - &
  • [23] EQUILIBRIUM VECTOR POTENTIALS IN R3
    YAMAGUCHI, H
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1992, 68 (07) : 164 - 166
  • [24] Fredholm property and essential spectrum of 3-D Dirac operators with regular and singular potentials
    Rabinovich, Vladimir
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (04) : 938 - 961
  • [25] Robust unbounded attractors for differential equations in R3
    Homburg, Ale Jan
    Mramor, Blaz
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (3-4) : 202 - 206
  • [26] On the p-Laplacian Kirchhoff-Schrodinger equation with potentials vanishing or unbounded at infinity in R3
    Shi, Zhiheng
    Liang, Sihua
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (03)
  • [27] Nonpositively curved surfaces in R3
    Chan, H
    Treibergs, A
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 57 (03) : 389 - 407
  • [28] Laguerre Geometry of Surfaces in R3
    Tong Zhu Li
    Acta Mathematica Sinica, 2005, 21 : 1525 - 1534
  • [29] Parameter counting for singular monopoles on R3
    Moore, Gregory W.
    Royston, Andrew B.
    Van den Bleeken, Dieter
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [30] Linear Weingarten surfaces in R3
    Gálvez, JA
    Martínez, A
    Milán, F
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (02): : 133 - 144