Accurately predicting the risk of cancer recurrence and metastasis is very important for individual cancer treatment. Currently, doctors usually use a histological grade that pathologists determine by performing a semiquantitative analysis of the three histopathological and cytological features of hematoxylin-eosin (HE) stained histopathological images. Evaluate the prognosis and treatment options of patients with breast cancer. In order to efficiently and objectively fully utilize the valuable information underlying HE- stained histopathological images, this work has potential as a feature for constructing a classification model of cancer prognosis. So, a calculation method is proposed to extract morphological information. Breast cancer is not a single disease, but it is composed of many different biological entities with different pathological features and clinical significance. With the advent of personalized medicine, pathologists are facing a significant increase in the workload and complexity of digital pathology in cancer diagnosis, and diagnostic protocols need to focus on equal efficiency and accuracy. Computer-aided image processing techniques have been shown to be able to improve the efficiency, accuracy, and consistency of histopathological assessments and provide decision support to ensure diagnostic consistency. First, a method for segmenting tumor lesions based on a pixel-by-pixel deep learning classifier is proposed and a method for segmenting cell nuclei based on marker-driven watersheds. It then subdivides all image objects and extracts a rich set of predefined quantitative morphological object feature. Then a classification model based on these measurements is used to predict disease-free survival in binary patients. Finally, the predictive model is tested in two independent cohorts of breast cancer patients.