Thermodynamics of coarse-grained models of supercooled liquids

被引:18
|
作者
Chandler, D [1 ]
Garrahan, JP
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 123卷 / 04期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1063/1.1955528
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent papers, we have argued that kinetically constrained coarse-grained models can be applied to understand dynamic properties of glass-forming materials, and we have used this approach in various applications that appear to validate this view. In one such paper [J. P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 100, 9710 (2003)], among other things we argued that this approach also explains why the heat-capacity discontinuity at the glass transition is generally larger for fragile materials than for strong materials. In the preceding article, Biroli, Bouchaud, and Tarjus have objected to our explanation on this point, arguing that the class of models we apply is inconsistent with both the absolute size and the temperature dependence of the experimental specific heat. Their argument, however, neglects parameters associated with the coarse graining. Accounting for these parameters, we show here that our treatment of dynamics is not inconsistent with heat-capacity discontinuities. (C) 2005 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Folding and design in coarse-grained protein models
    Peterson, C
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 712 - 714
  • [42] Applications of Coarse-Grained Models in Metabolic Engineering
    Doan, Dieu Thi
    Hoang, Manh Dat
    Heins, Anna-Lena
    Kremling, Andreas
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [43] Point multipole electrostatics for coarse-grained models
    Ichiye, Toshiko
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [44] Coarse-grained models and simulations of bilayer membranes
    Stevens, MJ
    Hoh, J
    Woolf, T
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 542A - 542A
  • [45] Development and Applications of Coarse-Grained Models for RNA
    Hyeon, Changbong
    Denesyuk, Natalia A.
    Thirumalai, D.
    ISRAEL JOURNAL OF CHEMISTRY, 2014, 54 (8-9) : 1358 - 1373
  • [46] Evidence of information limitations in coarse-grained models
    Khot, Aditi
    Shiring, Stephen B.
    Savoie, Brett M.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (24):
  • [47] Machine-Learned Coarse-Grained Models
    Bejagam, Karteek K.
    Singh, Samrendra
    An, Yaxin
    Deshmukh, Sanket A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16): : 4667 - 4672
  • [48] A Review of Cellulose Coarse-Grained Models and Their Applications
    Mehandzhiyski, Aleksandar Y.
    Zozoulenko, Igor
    POLYSACCHARIDES, 2021, 2 (02): : 257 - 270
  • [49] Folding Coarse-Grained Oligomer Models with PyRosetta
    Fobe, Theodore L.
    Walker, Christopher C.
    Meek, Garrett A.
    Shirts, Michael R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (10) : 6354 - 6369
  • [50] MARTINI Coarse-Grained Models of Polyethylene and Polypropylene
    Panizon, Emanuele
    Bochicchio, Davide
    Monticelli, Luca
    Rossi, Giulia
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (25): : 8209 - 8216