Propagation of grating-coupled surface plasmon polaritons and cosine-Gauss beam generation

被引:6
|
作者
Gazzola, Enrico [1 ]
Ruffato, Gianluca [1 ]
Romanato, Filippo [1 ,2 ]
机构
[1] Univ Padua, Dept Phys & Astron G Galilei, I-35131 Padua, Italy
[2] CNR, Inst Mat Mfg, IOM, I-34149 Trieste, Italy
关键词
DIFFRACTION GRATINGS;
D O I
10.1364/JOSAB.32.001564
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a surface plasmon polariton (SPP) is excited through a metallic grating in the conical mounting configuration, it propagates along a direction nonparallel to the grating Bragg vector. We will derive, under any possible coupling condition, the propagation direction as a function of experimental parameters, with particular attention to its relation with the azimuthal rotation angle. We will identify the conditions to achieve the maximum angular deflection with respect to the grating vector, also in relation to the grating geometry. Moreover, we will investigate the special configuration in which two SPP modes propagating toward different directions are simultaneously excited by the same light beam, suggesting to exploit this configuration to generate nondiffractive plasmonic beams (cosine-Gauss beams). The analytical treatment is supported by simulations with Chandezon's method. (C) 2015 Optical Society of America
引用
收藏
页码:1564 / 1569
页数:6
相关论文
共 50 条
  • [41] Magnetic Nanoparticle-Enhanced Biosensor Based on Grating-Coupled Surface Plasmon Resonance
    Wang, Yi
    Dostalek, Jakub
    Knoll, Wolfgang
    ANALYTICAL CHEMISTRY, 2011, 83 (16) : 6202 - 6207
  • [42] Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance
    M. Perino
    E. Pasqualotto
    M. Scaramuzza
    A. De Toni
    A. Paccagnella
    Plasmonics, 2014, 9 : 1103 - 1111
  • [43] Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors
    Kim, D
    APPLIED OPTICS, 2005, 44 (16) : 3218 - 3223
  • [44] Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves
    Balci, Sinan
    Kocabas, Askin
    Kocabas, Coskun
    Aydinli, Atilla
    APPLIED PHYSICS LETTERS, 2010, 97 (13)
  • [45] Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance
    Perino, M.
    Pasqualotto, E.
    Scaramuzza, M.
    De Toni, A.
    Paccagnella, A.
    PLASMONICS, 2014, 9 (05) : 1103 - 1111
  • [46] Surface profile dependence of the photon coupling efficiency and enhanced fluorescence in the grating-coupled surface plasmon resonance
    Hori, Hironobu
    Tawa, Keiko
    Kintaka, Kenji
    Nishii, Junji
    Tatsu, Yoshiro
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)
  • [47] Vortex surface plasmon polaritons on a cylindrical waveguide: generation, propagation, and diffraction
    Gerasimov, V. V.
    Kameshkov, O. E.
    Knyazev, B. A.
    Osintseva, N. D.
    Pavelyev, V. S.
    JOURNAL OF OPTICS, 2021, 23 (10)
  • [48] Dispersion of Surface Plasmon Polaritons on a Metallic Grating
    Lin I.-T.
    Lai Y.-P.
    Fan C.
    Liu J.-M.
    IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22 (02): : 244 - 250
  • [49] Multi-Response Nanowire Grating-Coupled Surface Plasmon Resonance by Finite Element Method
    Alwahib, Ali Abdulkhaleq
    Muttlak, Wijdan H.
    Abdulhadi, Ali H.
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2019, 12 (02): : 145 - 155
  • [50] Enhanced Photocurrent Generation at a Spiro-OMeTAD/AuNPs-TiO2 Interface with Grating-coupled Surface Plasmon Excitation
    Ninsonti, Hathaithip
    Hara, Kazuma
    Nootchanat, Supeera
    Chomkitichai, Weerasak
    Baba, Akira
    Phanichphant, Sukon
    Shinbo, Kazunari
    Kato, Keizo
    Kaneko, Futao
    IEICE TRANSACTIONS ON ELECTRONICS, 2015, E98C (02): : 104 - 109