Non-commutative Grobner bases under composition

被引:1
|
作者
Nordbeck, P [1 ]
机构
[1] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
关键词
non-commutative Grobner bases; composition of polynomials;
D O I
10.1081/AGB-100106789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polynomial composition is the operation of replacing the variables in a polynomial with other polynomials. In this paper we give sufficient and necessary conditions on a set Theta of non-commutative polynomials to assure that the set G circle Theta of composed polynomials is a Grobner basis in the free associative algebra whenever G is. The subject was initiated by Hong, treating the commutative analogue in (1998, J. Symb. Comput. 25, 643-663).
引用
收藏
页码:4831 / 4851
页数:21
相关论文
共 50 条
  • [41] On maximal commutative subrings of non-commutative rings
    Karamzadeh, O. A. S.
    Nazari, N.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5083 - 5115
  • [42] A Lift of the Schur and Hall-Littlewood Bases to Non-commutative Symmetric Functions
    Berg, Chris
    Bergeron, Nantel
    Saliola, Franco
    Serrano, Luis
    Zabrocki, Mike
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 525 - 565
  • [43] A Logical Framework with Commutative and Non-commutative Subexponentials
    Kanovich, Max
    Kuznetsov, Stepan
    Nigam, Vivek
    Scedrov, Andre
    AUTOMATED REASONING, IJCAR 2018, 2018, 10900 : 228 - 245
  • [44] Non-commutative algebraic geometry and commutative desingularizations
    Le Bruyn, L
    Noncommutative Algebra and Geometry, 2006, 243 : 203 - 252
  • [45] ON GROBNER BASES UNDER SPECIALIZATION
    BECKER, T
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1994, 5 (01) : 1 - 8
  • [46] THE NON-COMMUTATIVE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON NON-COMMUTATIVE LORENTZ SPACES
    Bekbayev, N. T.
    Tulenov, K. S.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 31 - 38
  • [47] Moduli spaces of maximally supersymmetric solutions on non-commutative tori and non-commutative orbifolds
    Konechny, A
    Schwarz, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (09):
  • [48] UNIFICATION IN COMMUTATIVE THEORIES, HILBERT BASIS THEOREM, AND GROBNER BASES
    BAADER, F
    JOURNAL OF THE ACM, 1993, 40 (03) : 477 - 503
  • [49] Non-commutative measure of quantum correlations under local operations
    Bussandri, D. G.
    Majtey, A. P.
    Valdes-Hernandez, A.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (02)
  • [50] Non-commutative measure of quantum correlations under local operations
    D. G. Bussandri
    A. P. Majtey
    A. Valdés-Hernández
    Quantum Information Processing, 2019, 18