Discrete multi-material interface reconstruction for volume fraction data

被引:13
|
作者
Anderson, J. C. [1 ]
Garth, C. [1 ]
Duchaineau, M. A. [2 ]
Joy, K. I. [1 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
关键词
D O I
10.1111/j.1467-8659.2008.01237.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Material interface reconstruction (MIR) is the task of constructing boundary interfaces between regions of homogeneous material, while satisfying volume constraints, over a structured or unstructured spatial domain. In this paper, we present a discrete approach to MIR based upon optimizing the labeling of fractional volume elements within a discretization of the problem's original domain. We detail how to construct and initially label a discretization, and introduce a volume conservative swap move for optimization. Furthermore, we discuss methods for extracting and visualizing material interfaces from the discretization. Our technique has significant advantages over previous methods: we produce interfaces between multiple materials that are continuous across cell boundaries for time-varying and static data in arbitrary dimension with bounded error
引用
收藏
页码:1015 / 1022
页数:8
相关论文
共 50 条
  • [41] Smooth, Volume-Accurate Material Interface Reconstruction
    Anderson, John C.
    Garth, Christoph
    Duchaineau, Mark A.
    Joy, Kenneth I.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (05) : 802 - 814
  • [42] Application of particle level set method in the multi-material interface capturing
    Liu, Yuan
    Wang, Cheng
    Zhao, Hai-Tao
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2013, 33 (SUPPL.2): : 172 - 174
  • [43] Multi-material topology optimization considering strengths of solid materials and interface
    Watanabe D.
    Hoshiba H.
    Nishiguchi K.
    Kato J.
    Transactions of the Japan Society for Computational Engineering and Science, 2023, 2023
  • [44] A conservative interface-interaction method for compressible multi-material flows
    Pan, Shucheng
    Han, Luhui
    Hu, Xiangyu
    Adams, Nikolaus A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 371 : 870 - 895
  • [45] Multi-material Volume Segmentation for Isosurfacing Using Overlapped Label Propagation
    Niizaka, Takuma
    Ohtake, Yutaka
    Michikawa, Takashi
    Suzuki, Hiromasa
    WSCG 2011: FULL PAPERS PROCEEDINGS, 2011, : 41 - 49
  • [46] Multi-Material Decomposition Using Statistical Image Reconstruction for Spectral CT
    Long, Yong
    Fessler, Jeffrey A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (08) : 1614 - 1626
  • [47] A totally Eulerian finite volume solver for multi-material fluid flows
    Braeunig, J. -P.
    Desjardins, B.
    Ghidaglia, J. -M.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2009, 28 (04) : 475 - 485
  • [48] Multi-material continuum topology optimization with arbitrary volume and mass constraints
    Sanders, Emily D.
    Aguilo, Miguel A.
    Paulino, Glaucio H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 798 - 823
  • [49] A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction
    Galera, Stephane
    Maire, Pierre-Henri
    Breil, Jerome
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (16) : 5755 - 5787
  • [50] Material efficiency in a multi-material world
    Lifset, Reid
    Eckelman, Matthew
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1986):