The electrooxidation of small organic molecules on platinum nanoparticles supported on gold: influence of platinum deposition procedure

被引:60
|
作者
Scheijen, F. J. E. [1 ]
Beltramo, G. L. [1 ]
Hoeppener, S. [2 ]
Housmans, T. H. M. [1 ]
Koper, M. T. M. [1 ]
机构
[1] Eindhoven Univ Technol, Schuit Inst Catalysis, Inorgan Chem & Catalysis Lab, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Lab Macromol Chem & Nanosci, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1007/s10008-007-0343-z
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrocatalytic properties of small platinum nanoparticles were investigated for the oxidation of CO, methanol, and formic acid using voltammetry, chronoamperometry, and surface-enhanced Raman spectroscopy. The particles were generated by galvanostatic deposition of platinum on a polished gold surface from an H2PtCl6 containing electrolyte and ranged between 10 and 20 nm in diameter for low platinum surface concentrations, 10 and 120 nm for medium concentrations, and full Pt monolayers for high concentrations. CO stripping and bulk CO oxidation experiments on the particles up to 120 nm in diameter displayed pronounced structural effects. The CO oxidation current-time transients show a current decay for low platinum coverages and a current maximum for medium and high coverages. These results were also observed in the literature for particles of 2- to 5-nm size and agglomerates of these particles. The similarities between the literature and our results, despite large differences in particle size and morphology, suggest that particle structure and morphology are also very important catalytic parameters. Surface-enhanced Raman spectroscopy data obtained for the oxidation of CO on the Pt-modified Au electrodes corroborate this conclusion. A difference in the ratio between CO adsorbed in linear- and bridge-bonded positions on the Pt nanoparticles of different sizes demonstrates the influence of the surface morphology. The oxidation activity of methanol was found to decrease with the particle size, while the formic acid oxidation rate increases. Again, a structural effect is observed for particles of up to ca. 120 nm in diameter, which is much larger than the particles for which a particle size effect was reported in the literature. The particle shape effect for the methanol oxidation reaction can be explained by a reduction in available "ensemble sites" and a reduction in the mobility of CO formed by decomposition of methanol. As formic acid does not require Pt ensemble sites, decreasing the particle size, and thus, the relative number of defects, increases the reaction rate.
引用
收藏
页码:483 / 495
页数:13
相关论文
共 50 条
  • [21] Deposition of platinum monolayers on gold
    Bakos, Istvan
    Szabo, Sandor
    Pajkossy, Tamas
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (11-12) : 2453 - 2459
  • [22] Methanol electrooxidation on platinum spontaneously deposited on unsupported and carbon-supported ruthenium nanoparticles
    Kuk, ST
    Wieckowski, A
    [J]. JOURNAL OF POWER SOURCES, 2005, 141 (01) : 1 - 7
  • [23] Hydrogen chemisorption on supported platinum, gold, and platinum-gold-alloy catalysts
    Bus, Eveline
    van Bokhoven, Jeroen A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (22) : 2894 - 2902
  • [24] Enhanced photoelectrocatalytic oxidation of small organic molecules by gold nanoparticles supported on carbon nitride
    Chang, Shouqin
    Xie, Aiyun
    Chen, Shu
    Xiang, Juan
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 719 : 86 - 91
  • [25] Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube–Nafion composite for methanol electrooxidation
    Yu-Chen Tsai
    Yu-Huei Hong
    [J]. Journal of Solid State Electrochemistry, 2008, 12 : 1293 - 1299
  • [26] Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution
    Selvakannan, PR
    Sastry, M
    [J]. CHEMICAL COMMUNICATIONS, 2005, (13) : 1684 - 1686
  • [27] Influence of nanostructured ceria support on platinum nanoparticles for methanol electrooxidation in alkaline media
    Zhou, Yunyun
    Menendez, Christian L.
    Guinel, Maxime J. -F.
    Needels, Elizabeth C.
    Gonzalez-Gonzalez, Ileana
    Jackson, Dichele L.
    Lawrence, Neil J.
    Cabrera, Carlos R.
    Cheung, Chin Li
    [J]. RSC ADVANCES, 2014, 4 (03): : 1270 - 1275
  • [28] Electrooxidation of small organic molecules on mesoporous precious metal catalysts II: CO and methanol on platinum-ruthenium alloy
    Jiang, JH
    Kucernak, A
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 543 (02) : 187 - 199
  • [29] Electrochemical Oxidation of Small Organic Molecules on Modified Platinum Electrode
    Wei Jie
    Wang Dongtian
    Li Chuanxiang
    Wang Yeqing
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (01) : 211 - 214