Copula-based scenario generation for urban traffic models
被引:1
|
作者:
Cervellera, Cristiano
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Council Italy, Inst Marine Engn, Via Da Marini 6, I-16149 Genoa, ItalyNatl Res Council Italy, Inst Marine Engn, Via Da Marini 6, I-16149 Genoa, Italy
Cervellera, Cristiano
[1
]
Maccio, Danilo
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Council Italy, Inst Marine Engn, Via Da Marini 6, I-16149 Genoa, ItalyNatl Res Council Italy, Inst Marine Engn, Via Da Marini 6, I-16149 Genoa, Italy
Maccio, Danilo
[1
]
Rebora, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Council Italy, Inst Marine Engn, Via Da Marini 6, I-16149 Genoa, ItalyNatl Res Council Italy, Inst Marine Engn, Via Da Marini 6, I-16149 Genoa, Italy
Rebora, Francesco
[1
]
机构:
[1] Natl Res Council Italy, Inst Marine Engn, Via Da Marini 6, I-16149 Genoa, Italy
One the most attractive features of urban traffic network models is the possibility of running hypothetical scenarios to evaluate the impact of strategic and tactical decisions. In order to provide statistically meaningful results, the simulation runs should be able to capture the complex multivariate distributions characterizing the involved variables, and a key factor is the correct modeling of possible statistical dependence among the generated inputs used to define the desired scenarios. Here we introduce a data-driven method for scenario generation based on the statistical concept of copula models, through which the marginals of single input parameters can be chosen freely without altering the joint multivariate dependence structure of the inputs. This approach is particularly suited to running what-if scenarios, in which the marginal distributions of the inputs are changed, while retaining the general joint dependence scheme. The method exploits only a finite set of measures from the network and copes with arbitrary sets of input parameters without requiring any assumption on the kind of traffic model or the shape of the involved multivariate distributions. Simulation tests involving different scenarios show that the proposed method is able to capture complex multivariate distributions of the simulation outcomes and yield reliable inferences in what-if analyses, significantly better than in the case the joint dependence is ignored.
机构:
Purdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
Univ Montreal, CIRRELT, CP 6128, Montreal, PQ H3C 3J7, CanadaPurdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
Jutras-Dube, Pascal
Al-Khasawneh, Mohammad B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Civil & Environm Engn, College Pk, MD 20742 USAPurdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
Al-Khasawneh, Mohammad B.
Yang, Zhichao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Civil & Environm Engn, College Pk, MD 20742 USAPurdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
Yang, Zhichao
Bas, Javier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, Dept Quantitat Econ, Madrid 28049, SpainPurdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
Bas, Javier
Bastin, Fabian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Dept Comp Sci & Operat Res, CP 6128, Montreal, PQ H3C 3J7, Canada
Univ Montreal, CIRRELT, CP 6128, Montreal, PQ H3C 3J7, CanadaPurdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
Bastin, Fabian
Cirillo, Cinzia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Civil & Environm Engn, College Pk, MD 20742 USAPurdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R China
Yan, Zhe
Chen, Zhiping
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R China
Chen, Zhiping
Consigli, Giorgio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergamo, Dept Management Econ & Quantitat Methods, Via Caniana 2, I-24127 Bergamo, ItalyXi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R China
Consigli, Giorgio
Liu, Jia
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R China
Liu, Jia
Jin, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R China