Impact of end-group modifications and planarity on BDP-based non-fullerene acceptors for high-performance organic solar cells by using DFT approach

被引:23
|
作者
Saeed, Muhammad Umar [1 ]
Hadia, N. M. A. [2 ]
Iqbal, Javed [1 ,3 ]
Hessien, M. M. [4 ]
Shawky, Ahmed M. [5 ]
Ans, Muhammad [1 ]
Alatawi, Naifa S. [6 ]
Khera, Rasheed Ahmad [1 ]
机构
[1] Univ Agr Faisalabad, Dept Chem, Faisalabad 38000, Pakistan
[2] Jouf Univ, Coll Sci, Phys Dept, POB 2014, Al Jouf, Sakaka, Saudi Arabia
[3] Univ Bahrain, Coll Sci, Dept Chem, POB 32038, Zallaq, Bahrain
[4] Taif Univ, Coll Sci, Dept Chem, POB 11099, Taif 21944, Saudi Arabia
[5] Umm Al Qura Univ, Sci & Technol Unit STU, Mecca 21955, Saudi Arabia
[6] Univ Tabuk, Fac Sci, Phys Dept, Tabuk 71421, Saudi Arabia
关键词
BDP-based small molecules; Molecular planarity parameter; Computational study; Reorganization energies; OPTOELECTRONIC PROPERTIES; PHOTOVOLTAIC PROPERTIES; SUBSTITUTION; FUNCTIONALS; DESIGN; DONORS;
D O I
10.1007/s00894-022-05382-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the aim to enhance the photovoltaic properties of organic solar cells (OSCs), seven new non-fullerene acceptors (K1-K7) have been designed by end-group modifications of benzo[2,1-b:3,4-b']bis(4H-dithieno[3,2-b:2',3'-d]pyrrole) (BDP)-based small molecule "MH" (which is taken as our reference R) using computational techniques. To investigate their various optoelectronic parameters, DFT studies were applied using the B3LYP functional at 6-31G (d, p) basis set. The measurement of molecular planarity parameter (MPP) and span of deviation from plane (SDP) confirmed the planar geometries of these structures resulting in enhanced conjugation. Frontier molecular orbital (FMO) and density of states (DOS) analyses confirmed shorter band gaps of K1-K7 as compared to R, which promotes charge transfer in them. Optical properties demonstrated that these compounds have absorption range from 692 to 711 nm, quite better than the 684 nm of reference R. Molecular electrostatic potential (MEP) and Mulliken' charge distribution analysis also revealed the presence of epic charge separation in these structures. K1-K7 showed enhanced LHE values as compared to R putting emphasis on their better abilities to produce charge carrier by absorption of light. Reorganization energies showed that all newly designed compound could have better rate of charge carrier mobility (except K4) than R. Calculations of open-circuit voltage (V-oc) and fill factor (FF) revealed its highest values for K3 and K4. Among newly designed molecules, K3 showed betterment in all its investigated parameters, making it a strong candidate to get enhanced power conversion efficiencies of OSCs.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Organic solar cells based on non-fullerene acceptors
    Jianhui Hou
    Olle Inganäs
    Richard H. Friend
    Feng Gao
    Nature Materials, 2018, 17 (2) : 119 - 128
  • [22] End-capped group modification on cyclopentadithiophene based non-fullerene small molecule acceptors for efficient organic solar cells; a DFT approach
    Khan, Muhammad Imran
    Iqbal, Javed
    Akram, Sahar Javaid
    El-Badry, Yaser A.
    Yaseen, Muhammad
    Khera, Rasheed Ahmad
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 113
  • [23] A-DA′D-A non-fullerene acceptors for high-performance organic solar cells
    Qingya Wei
    Wei Liu
    Mario Leclerc
    Jun Yuan
    Honggang Chen
    Yingping Zou
    Science China Chemistry, 2020, 63 : 1352 - 1366
  • [24] Impact of end groups on the performance of non-fullerene acceptors for organic solar cell applications
    Suman
    Singh, Surya Prakash
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (40) : 22701 - 22729
  • [25] Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells
    Liu, Wei
    Xu, Xiang
    Yuan, Jun
    Leclerc, Mario
    Zou, Yingping
    Li, Yongfang
    ACS ENERGY LETTERS, 2021, 6 (02) : 598 - 608
  • [26] A-DA'D-A non-fullerene acceptors for high-performance organic solar cells
    Wei, Qingya
    Liu, Wei
    Leclerc, Mario
    Yuan, Jun
    Chen, Honggang
    Zou, Yingping
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (10) : 1352 - 1366
  • [27] A-DA′D-A non-fullerene acceptors for high-performance organic solar cells
    Qingya Wei
    Wei Liu
    Mario Leclerc
    Jun Yuan
    Honggang Chen
    Yingping Zou
    Science China Chemistry, 2020, 63 (10) : 1352 - 1366
  • [28] End-capped group manipulation of non-fullerene acceptors for efficient organic photovoltaic solar cells: a DFT study
    Ahmed, Shahnaz
    Kalita, Dhruba Jyoti
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (41) : 23586 - 23596
  • [29] Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells
    Li, Dongxu
    Sun, Chaoyuan
    Yan, Tengfei
    Yuan, Jun
    Zou, Yingping
    ACS CENTRAL SCIENCE, 2021, 7 (11) : 1787 - 1797
  • [30] Molecular Insights of Non-fused Ring Acceptors for High-Performance Non-fullerene Organic Solar Cells
    Li, Yibin
    Yu, Jiangsheng
    Zhou, Yinhua
    Li, Zhong'an
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (57)