Nonfullerene acceptors (NFAs) have received tremendous attention due to their significant contributions to the field of organic solar cells (OSCs). However, the synthetic complexities of large fused-ring conjugated structures in typical NFAs limit their commercial applicability. Thus, a low-cost design strategy with synthetic simplicity and admirable absorption characteristics is highly desirable. In the present work, we report the synthesis of two nonfused NFAs, namely, 2,2'-((([1,2,5]thiadiazolo[3,4-c]pyridine-4,7-diylbis(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b:3,4-b']dithiophene-6,2-diyl))bis-(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (WHC-1) and 2,2'-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis (4,4-bis(2-ethylhexyl)- 4H-cyclopen ta [2,1-b: 3,4-b']dithiophene-6, 2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (WHC-4), based on altering the central acceptor core (A') with a pyrido- or benzothiadiazole (PT/BT) ring, keeping identical donor (D) bridges and end-capping acceptors (A's). The tuning of the central core with PT/BT altered the optical properties, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy levels, and fine-tuning in the molecular crystallinities. Moreover, a significant difference in the photovoltaic performance with decent power conversion efficiencies of 6.6% and 9.3% was achieved by WHC-1 and WHC-4, respectively, using a well-known polymer donor PM6. The results demonstrated the utility of A-D-A'-D-A type nonfused NFAs with broadband absorption spanning from 300 to 960 nm for high-performance OSCs. Furthermore, the scope of the development in A-D-A'-D-A type NFAs using appropriate building blocks can lead to a great breakthrough in OSCs.