An Unsupervised Method for Evaluating Electrical Impedance Tomography Images

被引:22
|
作者
Wang, Zeying [1 ]
Yue, Shihong [1 ]
Song, Kai [2 ]
Liu, Xiaoyuan [1 ]
Wang, Huaxiang [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical impedance tomography (EIT); fast fuzzy C-means (f-FCM); image evaluation; unsupervised method; visualizing technique; FUZZY C-MEANS; RECONSTRUCTION ALGORITHM; CAPACITANCE TOMOGRAPHY; INFORMATION; RESOLUTION;
D O I
10.1109/TIM.2018.2831478
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical impedance tomography (EIT) is an advanced visualizing technique with advantages such as real time, noninvasiveness, and low cost. However, the quality of EIT image still needs to be improved due to two inherent problems, i.e., ill-posed solution and "soft-field" effect. Nowadays, most of the existing EIT evaluation methods are supervised, relying on prior information or reference images, which are often unavailable in most applicable fields. In this paper, we proposed an unsupervised evaluation method based on a fast fuzzy C-means clustering algorithm. Compared with the most widely used evaluation methods, the new method could evaluate the reconstructed images without the need of any prior information or reference images. Simulations and experiments showed that the proposed method could efficiently evaluate the EIT images obtained using different algorithms with various parameters, and its capability of directly evaluating the reconstructed image made the evaluation process more useful in practical applications.
引用
收藏
页码:2796 / 2803
页数:8
相关论文
共 50 条
  • [41] A method for modelling and optimizing an electrical impedance tomography system
    Hartinger, Alzbeta Elizabeth
    Gagnon, Herve
    Guardo, Robert
    PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) : S51 - S64
  • [42] A Parametric Level Set Method for Electrical Impedance Tomography
    Liu, Dong
    Khambampati, Anil Kumar
    Du, Jiangfeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) : 451 - 460
  • [43] The factorization method for three dimensional electrical impedance tomography
    Chaulet, N.
    Arridge, S.
    Betcke, T.
    Holder, D.
    INVERSE PROBLEMS, 2014, 30 (04)
  • [44] Recent Progress on the Factorization Method for Electrical Impedance Tomography
    Harrach, Bastian
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013
  • [45] The use of the boundary element method in electrical impedance tomography
    de Munck, JC
    Faes, TJC
    Heethaar, RM
    BOUNDARY ELEMENT RESEARCH IN EUROPE, 1998, : 115 - 124
  • [46] The use of dual reciprocity method for electrical impedance tomography
    Trlep, M. (mlanden.trlep@uni-mb.si), 1600, Institute of Electrical and Electronics Engineers Inc. (37):
  • [47] Deep Autoencoder Imaging Method for Electrical Impedance Tomography
    Chen, Xiaoyan
    Wang, Zichen
    Zhang, Xinyu
    Fu, Rong
    Wang, Di
    Zhang, Miao
    Wang, Huaxiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [48] Factorization method and irregular inclusions in electrical impedance tomography
    Gebauer, Bastian
    Hyvonen, Nuutti
    INVERSE PROBLEMS, 2007, 23 (05) : 2159 - 2170
  • [49] The method of fundamental solutions for complex electrical impedance tomography
    Heravi, Marjan Asadzadeh
    Marin, Liviu
    Sebu, Cristiana
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 46 : 126 - 139
  • [50] ELECTRICAL IMPEDANCE TOMOGRAPHY, ENCLOSURE METHOD AND MACHINE LEARNING
    Siltanen, Samuli
    Ide, Takanori
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,