The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite

被引:62
|
作者
Ji, Liang [1 ]
Zhang, Liuting [1 ]
Yang, Xinglin [1 ]
Zhu, Xinqiao [2 ]
Chen, Lixin [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212003, Jiangsu, Peoples R China
[2] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621999, Sichuan, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
REDUCED GRAPHENE OXIDE; SORPTION KINETICS; NANOPARTICLES; FE; DEHYDROGENATION; CARBON; TI; CO; DESORPTION; NANOSHEETS;
D O I
10.1039/d0dt00230e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Magnesium hydride (MgH2) has been considered as a promising hydrogen storage material for buildings that are powered by hydrogen energy, but its practical application is hampered by poor kinetics and unstable thermodynamics. Herein, we describe a feasible method for preparing FeNi nanoparticles dispersed on reduced graphene oxide nanosheets (FeNi/rGO), and we confirmed that excellent catalytic effects increased the hydrogen storage performance of MgH2. 5 wt% FeNi/rGO-modified MgH2 began to release hydrogen at 230 degrees C and liberated 6.5 wt% H-2 within 10 min at 300 degrees C. As for the hydrogenation process, the dehydrogenated sample absorbed 5.4 wt% H-2 within 20 min at 125 degrees C under a hydrogen pressure of 32 bar. More importantly, a hydrogen capacity of 6.9 wt% was maintained after 50 cycles without compromising the kinetics during each cycle. A unique catalytic mechanism promoted synergetic effects between the in situ-formed Mg2Ni/Mg2NiH4, Fe, and rGO that efficiently promoted hydrogen dissociation and diffusion along the Mg/MgH2 interface, anchored the catalyst, and prevented MgH2 from aggregation and growth.
引用
收藏
页码:4146 / 4154
页数:9
相关论文
共 50 条
  • [31] Improved hydrogen storage properties of MgH2 catalyzed with TiO2
    Jangir, Mukesh
    Meena, Priyanka
    Jain, I. P.
    2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [32] Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2
    Chen, Jie
    Xia, Guanglin
    Guo, Zaiping
    Huang, Zhenguo
    Liub, Huakun
    Yu, Xuebin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) : 15843 - 15848
  • [33] MgH2 + FeNb nanocomposites for hydrogen storage
    Santos, S. F.
    Ishikawa, T. T.
    Botta, W. J.
    Huot, J.
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 147 (03) : 557 - 562
  • [34] Hydrogen Storage Properties of Pure MgH2
    Kwak, Young Jun
    Lee, Seong Ho
    Park, Hye Ryoung
    Song, Myoung Youp
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2013, 23 (05): : 266 - 270
  • [35] Review on improved hydrogen storage properties of MgH2 by adding new catalyst
    Liu, Chenxu
    Yuan, Zeming
    Li, Xiaoming
    Sun, Yize
    Zhai, Tingting
    Han, Zhonggang
    Zhang, Liwen
    Li, Tao
    JOURNAL OF ENERGY STORAGE, 2024, 97
  • [36] Improved hydrogen storage properties of MgH2 with Ni-based compounds
    Zhang, Qiuyu
    Zang, Lei
    Huang, Yike
    Gao, Panyu
    Jiao, Lifang
    Yuan, Huatang
    Wang, Yijing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (38) : 24247 - 24255
  • [37] Effect of LiBH4 on hydrogen storage property of MgH2
    Pan, Yanbiao
    Leng, Haiyan
    Wei, Jia
    Li, Qian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 10461 - 10469
  • [38] Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/10 wt% TiMn2 binary system
    El-Eskandarany, M. Sherif
    Al-Ajmi, Fahad
    Banyan, Mohammad
    Al-Duweesh, Ahmed
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (48) : 26428 - 26443
  • [39] Catalytic effect of TiO2 on hydrogen storage properties of MgH2
    Yadav, Deepak Kumar
    Chawla, Kanhaiya
    Pooja
    Lal, Nathu
    Choudhary, B. L.
    Lal, Chhagan
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 2326 - 2329
  • [40] Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2
    Xu, Nuo
    Yuan, Zirui
    Ma, Zhihong
    Guo, Xinli
    Zhu, Yunfeng
    Zou, Yongjin
    Zhang, Yao
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2023, 30 (01) : 54 - 62