A construction of curves over finite fields

被引:12
|
作者
Garcia, A [1 ]
Quoos, L
机构
[1] IMPA, Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Fed Univ Rio De Janeiro, Math Inst, BR-21945970 Rio De Janeiro, Brazil
关键词
D O I
10.4064/aa98-2-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:181 / 195
页数:15
相关论文
共 50 条
  • [31] Group Structures of Elliptic Curves Over Finite Fields
    Chandee, Vorrapan
    David, Chantal
    Koukoulopoulos, Dimitris
    Smith, Ethan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) : 5230 - 5248
  • [32] ON CURVES OVER FINITE FIELDS WITH JACOBIANS OF SMALL EXPONENT
    Ford, Kevin
    Shparlinski, Igor
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 819 - 826
  • [33] Most plane curves over finite fields are not blocking
    Asgarli, Shamil
    Ghioca, Dragos
    Yip, Chi Hoi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [34] Division polynomials of elliptic curves over finite fields
    Cheon, J
    Hahn, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (10) : 226 - 227
  • [35] Optimal curves of low genus over finite fields
    Zaytsey, Alexey
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 : 203 - 224
  • [36] On the completeness of plane cubic curves over finite fields
    Daniele Bartoli
    Stefano Marcugini
    Fernanda Pambianco
    Designs, Codes and Cryptography, 2017, 83 : 233 - 267
  • [37] Lattices from elliptic curves over finite fields
    Fukshansky, Lenny
    Maharaj, Hiren
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 : 67 - 78
  • [38] A note on the Tate pairing of curves over finite fields
    Hess, F
    ARCHIV DER MATHEMATIK, 2004, 82 (01) : 28 - 32
  • [39] Primes in short intervals on curves over finite fields
    Efrat Bank
    Tyler Foster
    Mathematische Annalen, 2019, 374 : 447 - 474
  • [40] On the genus spectrum of maximal curves over finite fields
    Danisman, Yusuf
    Ozdemir, Mehmet
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (05): : 513 - 529