DIFFERENTIAL INFORMATION RESIDUAL CONVOLUTIONAL NEURAL NETWORK FOR PANSHARPENING

被引:0
|
作者
Jiang, Menghui [1 ]
Li, Jie [2 ]
Yuan, Qiangqiang [2 ]
Shen, Huanfeng [1 ]
Liu, Xinxin [3 ]
Xu, Mingming [4 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Peoples R China
[3] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[4] China Univ Petr, Coll Geosci & Technol, Dongying, Peoples R China
基金
中国国家自然科学基金;
关键词
Pansharpening; RCNN; differential information;
D O I
10.1109/igarss.2019.8900270
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, a new pansharpening method with residual convolutional neural network (RCNN)) is proposed. The proposed method utilizes a novel end-to-end CNN, which maps the differential information between the high spatial resolution panchromatic image (HR-PAN) and the low spatial resolution multispectral image (LR-MS) to the differential information between the HR-PAN image and the high spatial resolution multispectral image (HR-MS). Unlike the CNN-based pansharpening methods in other literatures, the proposed method makes full use of the spatial information in the HR-PAN image, and simultaneously preserve the spectral information of the MS image. Experimental results at both reduced resolution and full resolution demonstrate the superior performance of the proposed method comparing to state-of-the-art pansharpening methods in both quantitative and visual assessments.
引用
收藏
页码:4865 / 4868
页数:4
相关论文
共 50 条
  • [41] Residual Convolutional Graph Neural Network with Subgraph Attention Pooling
    Yutai Duan
    Jianming Wang
    Haoran Ma
    Yukuan Sun
    Tsinghua Science and Technology, 2022, 27 (04) : 653 - 663
  • [42] Adaptive residual convolutional neural network for moiré image restoration
    Vindhya P. Malagi
    E. Naresh
    C. Mithra
    B. V. N. V. Krishna Suresh
    International Journal of Information Technology, 2025, 17 (2) : 783 - 791
  • [43] Attacking convolutional neural network using differential evolution
    Su J.
    Vargas D.V.
    Sakurai K.
    IPSJ Transactions on Computer Vision and Applications, 2019, 11 (01):
  • [44] Residual neural network-based fully convolutional network for microstructure segmentation
    Jang, Junmyoung
    Van, Donghyun
    Jang, Hyojin
    Baik, Dae Hyun
    Yoo, Sang Duk
    Park, Jaewoong
    Mhin, Sungwook
    Mazumder, Jyoti
    Lee, Seung Hwan
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2020, 25 (04) : 282 - 289
  • [45] Image Denoiser Using Convolutional Neural Network with Deconvolution and Modified Residual Network
    Shin, Soo-Yeon
    Kim, Dong-Myung
    Suh, Jae-Won
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (08) : 1598 - 1601
  • [46] PCDRN: Progressive Cascade Deep Residual Network for Pansharpening
    Yang, Yong
    Tu, Wei
    Huang, Shuying
    Lu, Hangyuan
    REMOTE SENSING, 2020, 12 (04)
  • [48] Processing of chromatic information in a deep convolutional neural network
    Flachot, Alban
    Gegenfurtner, Karl R.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2018, 35 (04) : B334 - B346
  • [49] OPTIMAL COMPONENT SUBSTITUTION AND MULTI-RESOLUTION ANALYSIS PANSHARPENING METHODS USING A CONVOLUTIONAL NEURAL NETWORK
    Palsson, Frosti
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3177 - 3180
  • [50] Spectral-Fidelity Convolutional Neural Networks for Hyperspectral Pansharpening
    He, Lin
    Zhu, Jiawei
    Li, Jun
    Meng, Deyu
    Chanussot, Jocelyn
    Plaza, Antonio J.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5898 - 5914