New constructions of Yang-Baxter systems

被引:0
|
作者
Nichita, Florin F. [1 ,2 ]
Parashar, Deepak [3 ,4 ]
机构
[1] Simion Stoilow Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
[2] Amer Univ Kuwait, Coll Arts & Sci, Safat 13034, Kuwait
[3] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[4] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quantum Yang-Baxter equation admits generalisations to systems of Yang-Baxter type equations called Yang-Baxter systems. Starting from algebra structures, we propose new constructions of some constant as well as the spectral-parameter dependent Yang-Baxter systems. Besides, we also present explicitly the commutation algebra structure associated to the constant type in dimension two.
引用
收藏
页码:193 / +
页数:3
相关论文
共 50 条
  • [41] Integrable systems generated by a constant solution of the Yang-Baxter equation
    Golubchik, IZ
    Sokolov, VV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (04) : 275 - 277
  • [42] Measurement of 'closeness' and Distinguishability of the Quantum States in Yang-Baxter Systems
    Duran, Durgun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 3087 - 3102
  • [43] Yang-Baxter方程的解与量子Yang-Baxter H-余模(英文)
    李立斌
    魏俊潮
    数学研究与评论, 1999, (04) : 649 - 653
  • [44] Leibniz Bialgebras, Classical Yang-Baxter Equations and Dynamical Systems
    Rezaei-Aghdam, Adel
    Sedghi-Ghadim, Leila
    Haghighatdoost, Ghorbanali
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (05)
  • [45] Discrete Integrable Systems, Darboux Transformations, and Yang-Baxter Maps
    Bilman, Deniz
    Konstantinou-Rizos, Sotiris
    SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS, 2017, : 195 - 260
  • [46] Measurement of ‘closeness’ and Distinguishability of the Quantum States in Yang-Baxter Systems
    Durgun Duran
    International Journal of Theoretical Physics, 2021, 60 : 3087 - 3102
  • [47] HOPF BRACES AND YANG-BAXTER OPERATORS
    Angiono, Ivan
    Galindo, Cesar
    Vendramin, Leandro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) : 1981 - 1995
  • [48] Lax matrices for Yang-Baxter maps
    Suris, YB
    Veselov, AP
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 : 223 - 230
  • [49] A Yang-Baxter equation for metaplectic ice
    Brubaker, Ben
    Buciumas, Valentin
    Bump, Daniel
    Gray, Nathan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (01) : 101 - 148
  • [50] Optical simulation of the Yang-Baxter equation
    Hu, Shuang-Wei
    Xue, Kang
    Ge, Mo-Lin
    PHYSICAL REVIEW A, 2008, 78 (02):