A generalization of Schmidt number for multipartite states

被引:5
|
作者
Guo, Yu [1 ]
Fan, Heng [2 ]
机构
[1] Shanxi Datong Univ, Sch Math & Comp Sci, Datong 037009, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Schmidt number; Schmidt coefficients; multipartite system; entanglement measure; QUANTUM CORRELATION; ENTANGLEMENT;
D O I
10.1142/S0219749915500252
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Schmidt number is of crucial importance in characterizing the bipartite pure states. We explore and propose here a generalization of Schmidt number for states in multipartite systems. It is shown to be entanglement monotonic and valid for both pure and mixed states. In addition, the corresponding generalization of multipartite Schmidt coefficients is introduced. Our approach is applicable for systems with arbitrary number of parties and for arbitrary dimensions.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Teleportations of Mixed States and Multipartite Quantum States
    YU Chang-Shui~1 WANG Ya-Hong~(1
    Communications in Theoretical Physics, 2007, 47 (06) : 1041 - 1044
  • [42] Teleportations of mixed states and multipartite quantum states
    Yu Chang-Shui
    Wang Ya-Hong
    Song He-Shan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (06) : 1041 - 1044
  • [43] Robustness of Λ-entanglement of multipartite states
    Yang, Ying
    Cao, Huai-Xin
    Meng, Hui-Xian
    QUANTUM INFORMATION PROCESSING, 2019, 18 (12)
  • [44] Witnessing nonclassical multipartite states
    Saguia, A.
    Rulli, C. C.
    de Oliveira, Thiago R.
    Sarandy, M. S.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [45] Correlated multipartite quantum states
    Batle, J.
    Casas, M.
    Plastino, A.
    PHYSICAL REVIEW A, 2013, 87 (03)
  • [46] Multipartite entanglement in conditional states
    Urbina, Juan Diego
    Strunz, Walter T.
    Viviescas, Carlos
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [48] Schmidt number for density matrices
    Terhal, BM
    Horodecki, P
    PHYSICAL REVIEW A, 2000, 61 (04): : 4
  • [49] Schmidt number for quantum operations
    Huang, Siendong
    PHYSICAL REVIEW A, 2006, 73 (05):
  • [50] Schmidt number for density matrices
    Terhal, Barbara M.
    Horodecki, Pawel
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (04): : 403011 - 403014