A generalization of Schmidt number for multipartite states

被引:5
|
作者
Guo, Yu [1 ]
Fan, Heng [2 ]
机构
[1] Shanxi Datong Univ, Sch Math & Comp Sci, Datong 037009, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Schmidt number; Schmidt coefficients; multipartite system; entanglement measure; QUANTUM CORRELATION; ENTANGLEMENT;
D O I
10.1142/S0219749915500252
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Schmidt number is of crucial importance in characterizing the bipartite pure states. We explore and propose here a generalization of Schmidt number for states in multipartite systems. It is shown to be entanglement monotonic and valid for both pure and mixed states. In addition, the corresponding generalization of multipartite Schmidt coefficients is introduced. Our approach is applicable for systems with arbitrary number of parties and for arbitrary dimensions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multipartite generalization of the Schmidt decomposition
    Carteret, HA
    Higuchi, A
    Sudbery, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) : 7932 - 7939
  • [2] Schmidt number of bipartite and multipartite states under local projections
    Lin Chen
    Yu Yang
    Wai-Shing Tang
    Quantum Information Processing, 2017, 16
  • [3] Schmidt number of bipartite and multipartite states under local projections
    Chen, Lin
    Yang, Yu
    Tang, Wai-Shing
    QUANTUM INFORMATION PROCESSING, 2017, 16 (03)
  • [4] Schmidt Number Entanglement Measure for Multipartite k-nonseparable States
    Wang, Yinzhu
    Liu, Tianwen
    Ma, Ruifen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (03) : 983 - 990
  • [5] Schmidt Number Entanglement Measure for Multipartite k-nonseparable States
    Yinzhu Wang
    Tianwen Liu
    Ruifen Ma
    International Journal of Theoretical Physics, 2020, 59 : 983 - 990
  • [6] Entanglement of multipartite Schmidt-correlated states
    Zhao, Ming-Jing
    Fei, Shao-Ming
    Wang, Zhi-Xi
    PHYSICS LETTERS A, 2008, 372 (15) : 2552 - 2557
  • [7] Geometrical entanglement of highly symmetric multipartite states and the Schmidt decomposition
    Buhr, D.
    Carrington, M. E.
    Fugleberg, T.
    Kobes, R.
    Kunstatter, G.
    McGillis, D.
    Pugh, C.
    Ryckman, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (36)
  • [8] Distilling multipartite pure states from a finite number of copies of multipartite mixed states
    Chen, PX
    Li, CZ
    PHYSICAL REVIEW A, 2004, 69 (01): : 5
  • [9] Distilling multipartite pure states from a finite number of copies of multipartite mixed states
    Chen, Ping-Xing
    Li, Cheng-Zu
    Physical Review A - Atomic, Molecular, and Optical Physics, 2004, 69 (01): : 123081 - 123085
  • [10] Inequalities for the Schmidt number of bipartite states
    Cariello, Daniel
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (04) : 827 - 833