Large-N limit of the gradient flow in the 2D O (N) nonlinear sigma model

被引:9
|
作者
Makino, Hiroki [1 ]
Sugino, Fumihiko [2 ]
Suzuki, Hiroshi [1 ]
机构
[1] Kyushu Univ, Dept Phys, Higashi Ku, Fukuoka 8128581, Japan
[2] Okayama Inst Quantum Phys, Kita Ku, Okayama 7000015, Japan
来源
关键词
D O I
10.1093/ptep/ptv044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The gradient flow equation in the 2D O(N) nonlinear sigma model with lattice regularization is solved in the leading order of the 1/N expansion. By using this solution, we analytically compute the thermal expectation value of a lattice energy-momentum tensor defined through the gradient flow. The expectation value reproduces thermodynamic quantities obtained by the standard large-N method. This analysis confirms that the above lattice energy-momentum tensor restores the correct normalization automatically in the continuum limit, in a system with a non-perturbative mass gap.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] LARGE-N LIMIT OF THE HUBBARD-HEISENBERG MODEL
    MARSTON, JB
    AFFLECK, I
    PHYSICAL REVIEW B, 1989, 39 (16): : 11538 - 11558
  • [32] DYNAMICS OF THE RANDOM ANISOTROPY MODEL IN THE LARGE-N LIMIT
    JAGANNATHAN, A
    SCHAUB, B
    KOSTERLITZ, JM
    NUCLEAR PHYSICS B, 1986, 265 (02) : 324 - 338
  • [33] Large-N solution of the heterotic N = (0,1) two-dimensional O(N) sigma model
    Koroteev, Peter
    Monin, Alexander
    PHYSICAL REVIEW D, 2010, 81 (10)
  • [34] Modular anomaly equations in N=2*theories and their large-N limit
    Billo, M.
    Frau, M.
    Fucito, F.
    Lerda, A.
    Morales, J. F.
    Poghossian, R.
    Pacifici, D. Ricci
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [35] The large-N limit of the 4d N=1 superconformal index
    Cabo-Bizet, Alejandro
    Cassani, Davide
    Martelli, Dario
    Murthy, Sameer
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, (11):
  • [36] LARGE-N NONLINEAR SIGMA-MODELS ON R2XS1
    SONG, DY
    PHYSICAL REVIEW D, 1994, 49 (12): : 6794 - 6798
  • [37] Universe as a nonlinear quantum simulation: Large-n limit of the central-spin model
    Geller, Michael R.
    PHYSICAL REVIEW A, 2023, 108 (04)
  • [38] LARGE N-LIMIT ON LANGEVIN EQUATION 2-DIMENSIONAL NONLINEAR SIGMA MODEL
    MOCHIZUKI, R
    YOSHIDA, K
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (01): : 275 - 279
  • [39] Large-N CPN - 1 sigma model on a finite interval
    Bolognesi, Stefano
    Konishi, Kenichi
    Ohashi, Keisuke
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [40] Complex renormalization group flows for 2D nonlinear O(N) sigma models
    Meurice, Y.
    Zou, Haiyuan
    PHYSICAL REVIEW D, 2011, 83 (05):