Accuracy Analysis of Node Activation Function Based on Hardware Implementation of Artificial Neural Network

被引:0
|
作者
Jiang, Nan [1 ]
Hou, Ligang [1 ]
Guo, Jia [1 ]
Zhang, Xinyi [1 ]
Lv, Ang [1 ]
机构
[1] Beijing Univ Technol, VLSI & Syst Lab, Beijing, Peoples R China
关键词
artificial neural network; VLSI; piecewise nonlinear approximation; bit level mapping;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the difficulties encountered in realizing artificial neural network based on VLSI is the choice of the implementation method of activation function. At present, the main approaches to solve this problem are piecewise nonlinear approximation and bit level mapping. Based on hyperbolic tangent, the final output error of the two methods is discussed through the hardware implementation and software analysis of the artificial neural network nodes. We found that the nonlinear approximation method has the problem of large output fluctuation, and the amplification effect of the backpropagation can not be ignored. Therefore, this paper proposes that the bit level mapping method has more advantages in practical applications in the implementation of high-precision artificial neural nodes.
引用
收藏
页码:278 / 281
页数:4
相关论文
共 50 条
  • [1] Conversion of Artificial Neural Network to Spiking Neural Network for Hardware Implementation
    Chen, Yi-Lun
    Lu, Chih-Cheng
    Juang, Kai-Cheung
    Tang, Kea-Tiong
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [2] An Efficient Hardware Implementation of Artificial Neural Network based on Stochastic Computing
    Duy-Anh Nguyen
    Huy-Hung Ho
    Duy-Hieu Bui
    Xuan-Tu Tran
    PROCEEDINGS OF 2018 5TH NAFOSTED CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS 2018), 2018, : 237 - 242
  • [3] A Modularization Hardware Implementation Approach for Artificial Neural Network
    Wang, Tong
    Wang, Lianming
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 670 - 675
  • [4] Advancements in Perceptron Hardware for Efficient Implementation in Artificial Neural Network
    Mohaidat, Tamador
    Khalil, Kasem
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [5] Artificial Neural Network Hardware Implementation: Recent Trends and Applications
    Gupta, Jagrati
    Koppad, Deepali
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 345 - 354
  • [6] Numerical analysis and implementation of artificial neural network algorithm for nonlinear function
    Kumar P.S.
    Sivamani S.
    International Journal of Information Technology, 2021, 13 (5) : 2059 - 2068
  • [7] Implementation of the SoftMax Activation for Reconfigurable Neural Network Hardware Accelerators
    Shatravin, Vladislav
    Shashev, Dmitriy
    Shidlovskiy, Stanislav
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [8] Hardware-Based Activation Function-Core for Neural Network Implementations
    Gonzalez-Diaz Conti, Griselda
    Vazquez-Castillo, Javier
    Longoria-Gandara, Omar
    Castillo-Atoche, Alejandro
    Carrasco-Alvarez, Roberto
    Espinoza-Ruiz, Adolfo
    Ruiz-Ibarra, Erica
    ELECTRONICS, 2022, 11 (01)
  • [9] A Review of Activation Function for Artificial Neural Network
    Rasamoelina, Andrinandrasana David
    Adjailia, Fouzia
    Sincak, Peter
    2020 IEEE 18TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2020), 2020, : 281 - 286
  • [10] Stochastic Implementation of the Activation Function for Artificial Neural Networks
    Yeo, Injune
    Gi, Sang-gyun
    Lee, Byung-geun
    Chu, Myonglae
    PROCEEDINGS OF 2016 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2016, : 440 - 443