Performance of absorption chillers in field tests

被引:17
|
作者
Guido, Walther Huels [1 ]
Lamer, Wolfgang [1 ]
Petersen, Stefan [1 ]
Ziegler, Felix [1 ]
机构
[1] Tech Univ Berlin, Inst Energy Engn, KT2,Marchstr 18, D-10587 Berlin, Germany
关键词
System efficiency; Trigeneration; Combined cooling; Heat and power CCHP; Solar cooling; Dry cooling towers; Thermally driven cooling;
D O I
10.1016/j.applthermaleng.2018.02.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
Absorption chillers can use waste heat, solar heat, or excess heat by cogeneration facilities to supply chilled water. Therefore, absorption chillers are important components for poly-generation, which can improve plant utilization and efficiency of the overall energy supply system. Currently, 27 new small and medium-scale (30-160 kW cooling capacity) absorption chillers with high efficiency in full- and part-load as well as low specific size and weight are the focus of two research projects sponsored by German Federal Ministries. The chillers are located in 20 different sites, four of them in Jordan and the rest in Germany. The main objective of these projects is to enhance trigeneration and solar cooling system efficiency. The Jordan projects and more than 70% of the German installations use dry cooling towers. Combined heat and power (CHP) plants or district heating grids provide the driving heat for regeneration at the German installations. Solar thermal collectors drive one German and all Jordan installations. Within the projects, the chillers are provided with an intelligent control algorithm that allows achieving several objectives at the same time. One of the objectives, of course, is to match the desired chilled water temperature as well as the cooling capacity. Another objective is, for instance, to fit the hot water outlet temperature. This is commonly essential in cogeneration to avoid emergency shutdowns of the CHP engine. The field operation shows that the deviation of said temperatures from the set point is usually less than 0.5 K in operation. In those operational hours in which the temperatures of the heat source or heat sink do not allow to reach all objectives, a set of hierarchical aims can be established within the algorithm so that the chiller can be controlled to match its prioritized objectives. Furthermore, the designed absorption chiller performs dynamically and autonomously in a very large range of temperatures and flow rates. These can vary from 20% up to 150% of nominal conditions. This flexibility can be used to achieve up to 80% savings of electrical power consumption using speed-controlled pumps in part load conditions. In contrast to the common opinion that small and medium-scale absorption chillers are not competitive as compared to compression chillers, this paper shows applications in which absorption chillers are advantageous because of synergies with and multiple benefits within the rest of the energy supply system.
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [21] Performance analysis of small capacity absorption chillers by using different modeling methods
    Labus, Jerko
    Bruno, Joan Caries
    Coronas, Alberto
    APPLIED THERMAL ENGINEERING, 2013, 58 (1-2) : 305 - 313
  • [22] Absorption Chillers to Improve the Performance of Small-Scale Biomethane Liquefaction Plants
    Ciambellotti, Alessio
    Pasini, Gianluca
    Baccioli, Andrea
    Ferrari, Lorenzo
    Barsali, Stefano
    ENERGIES, 2022, 15 (01)
  • [23] Absorption chillers used in warehouse cooling
    HPAC Heat Piping Air Cond, 5 (104-105):
  • [24] On-field validation of a seasonal performance calculation method for chillers in buildings
    Schibuola, Luigi
    Scarpa, Massimiliano
    ENERGY CONVERSION AND MANAGEMENT, 2014, 85 : 62 - 69
  • [25] Extending the boundaries of ammonia absorption chillers
    Erickson, Donald C.
    ASHRAE JOURNAL, 2007, 49 (04) : 32 - 35
  • [26] OPERATING COMPARISON OF ABSORPTION AND CENTRIFUGAL CHILLERS
    TOZER, RM
    ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1994, 36 (10): : 20 - &
  • [27] IMPROVED CONTROL OF ABSORPTION CHILLERS.
    Anon
    1600, (77):
  • [28] Design criteria options for absorption chillers
    Rawski, Stephen
    Clark, William
    Strategic Planning for Energy and the Environment, 1993, 13 (01) : 19 - 34
  • [29] Real operating performance and analysis of gas-fired lithium bromide absorption chillers
    Hu, Jinqiang
    Wang, Ruzhu
    Xia, Zaizhong
    Zhang, Zhen
    Jin, Xinqiao
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2009, 30 (04): : 470 - 474
  • [30] PART-LOAD PERFORMANCE CHARACTERISTICS OF RESIDENTIAL ABSORPTION CHILLERS AND HEAT PUMPS.
    Didion, D.
    Radermacher, R.
    International Journal of Refrigeration, 1984, 7 (06) : 383 - 398