Analysis of analysis: Using machine learning to evaluate the importance of music parameters for Schenkerian analysis

被引:2
|
作者
Kirlin, Phillip B. [1 ]
Yust, Jason [2 ]
机构
[1] Rhodes Coll, Dept Math & Comp Sci, Memphis, TN 38112 USA
[2] Boston Univ, Sch Mus, Boston, MA 02215 USA
关键词
Schenkerian analysis; machine learning; harmony; melody; rhythm; feature selection; 68T05; 68T10; supervised learning; sound and music computing;
D O I
10.1080/17459737.2016.1209588
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While criteria for Schenkerian analysis have been much discussed, such discussions have generally not been informed by data. Kirlin [Kirlin, PhillipB., 2014 A Probabilistic Model of Hierarchical Music Analysis. Ph.D. thesis, University of Massachusetts Amherst] has begun to fill this vacuum with a corpus of textbook Schenkerian analyses encoded using data structures suggested byYust [Yust, Jason, 2006 Formal Models of Prolongation. Ph.D. thesis, University of Washington] and a machine learning algorithm based on this dataset that can produce analyses with a reasonable degree of accuracy. In this work, we examine what musical features (scale degree, harmony, metrical weight) are most significant in the performance of Kirlin's algorithm.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [21] A COMPUTER AID FOR SCHENKERIAN ANALYSIS
    SMOLIAR, SW
    COMPUTER MUSIC JOURNAL, 1980, 4 (02) : 41 - 59
  • [22] Automated Analysis of Nuclear Parameters in Oral Exfoliative Cytology Using Machine Learning
    Mhaske, Shubhangi
    Ramalingam, Karthikeyan
    Nair, Preeti
    Patel, Shubham
    Menon, P. Arathi
    Malik, Nida
    Mhaske, Sumedh
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (04)
  • [23] Molecular cluster analysis using local order parameters selected by machine learning
    Takahashi, Kazuaki Z.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 25 (01) : 658 - 672
  • [24] Machine Learning in Failure Regions Detection and Parameters Analysis
    Wahab, Saeed Abdel
    ElAdawi, Reem
    Khater, Ahmed
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 45 - 52
  • [25] Optimization of Machine Learning Parameters for Spectrum Survey Analysis
    Urban, R.
    Steinbauer, M.
    PIERS 2014 GUANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2014, : 616 - 619
  • [26] Machine Learning in Failure Regions Detection and Parameters Analysis
    Wahab S.A.
    El Adawi R.
    Khater A.
    International Journal of Networked and Distributed Computing, 2019, 8 (1) : 41 - 48
  • [27] On the statistical analysis of the parameters' trend in a machine learning algorithm
    García S.
    Derrac J.
    Ramírez-Gallego S.
    Herrera F.
    García, S. (sglopez@ujaen.es), 1600, Springer Verlag (03): : 51 - 53
  • [28] Using machine learning analysis to interpret the relationship between music emotion and lyric features
    Xu, Liang
    Sun, Zaoyi
    Wen, Xin
    Huang, Zhengxi
    Chao, Chi-ju
    Xu, Liuchang
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 23
  • [29] Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques
    Moragues, Raul
    Aparicio, Juan
    Esteve, Miriam
    MATHEMATICS, 2023, 11 (11)
  • [30] Using Machine Learning and Multi-Element Analysis to Evaluate the Authenticity of Organic and Conventional Vegetables
    Araujo, Eloa Moura
    de Lima, Marcio Dias
    Barbosa, Rommel
    Ferracciu Alleoni, Luis Reynaldo
    FOOD ANALYTICAL METHODS, 2019, 12 (11) : 2542 - 2554