Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana

被引:48
|
作者
Wan, Yinglang [1 ]
Ill, William M. Ash [2 ]
Fan, Lusheng [1 ,3 ]
Hao, Huaiqin [1 ]
Kim, Myung K. [2 ]
Lin, Jinxing [1 ]
机构
[1] Chinese Acad Sci, Inst Bot, Key Lab Plant Mol Physiol, Beijing 100093, Peoples R China
[2] Univ S Florida, Dept Phys, Digital Holog & Microscopy Lab, Tampa, FL 33620 USA
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Quantitative; VA-TIRFM; optical analysis; intact cell; cell wall; SUBCELLULAR-LOCALIZATION; PLANT; DYNAMICS;
D O I
10.1186/1746-4811-7-27
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Total internal reflection fluorescence microscopy (TIRFM) is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM) was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. Results: Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein) and clathrin light chain (a vesicle coat protein) support our theoretical analysis. Conclusions: These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] TOTAL INTERNAL-REFLECTION FLUORESCENCE MICROSCOPY
    THOMPSON, NL
    PEARCE, KH
    HSIEH, HV
    POGLITSCH, CL
    PISARCHICK, ML
    GESTY, D
    FASEB JOURNAL, 1992, 6 (01): : A415 - A415
  • [22] TOTAL INTERNAL-REFLECTION FLUORESCENCE MICROSCOPY
    AXELROD, D
    METHODS IN CELL BIOLOGY, 1989, 30 : 245 - 270
  • [23] Scanning total internal reflection fluorescence microscopy
    Gu, M
    Chon, J
    OPTICS FOR THE QUALITY OF LIFE, PTS 1 AND 2, 2003, 4829 : 634 - 635
  • [24] SPARSE RECONSTRUCTION FROM MULTIPLE-ANGLE TOTAL INTERNAL REFLECTION FLUORESCENCE MICROSCOPY
    Soubies, Emmanuel
    Blanc-Feraud, Laure
    Schaub, Sebastien
    Aubert, Gilles
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2844 - 2848
  • [25] Measuring incidence angle for through-the-objective total internal reflection fluorescence microscopy
    Burghardt, Thomas P.
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (12)
  • [26] APPLICATIONS OF TOTAL INTERNAL-REFLECTION FLUORESCENCE MICROSCOPY
    AXELROD, D
    STOUT, AL
    MCKIERNAN, AE
    WANG, MD
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A251 - A251
  • [27] Total internal reflection fluorescence microscopy in cell biology
    Axelrod, D
    TRAFFIC, 2001, 2 (11) : 764 - 774
  • [28] Total internal reflection fluorescence microscopy in cell biology
    Axelrod, D
    BIOPHOTONICS, PT B, 2003, 361 : 1 - 33
  • [29] Detection efficiency in total internal reflection fluorescence microscopy
    Leutenegger, Marcel
    Lasser, Theo
    OPTICS EXPRESS, 2008, 16 (12) : 8519 - 8531
  • [30] Image processing in total internal reflection fluorescence microscopy
    Kuznetsova, O. B.
    Savchenko, E. A.
    Andryakov, A. A.
    Savchenko, E. Y.
    Musakulova, Z. A.
    INTERNATIONAL CONFERENCE EMERGING TRENDS IN APPLIED AND COMPUTATIONAL PHYSICS 2019 (ETACP-2019), 2019, 1236