Transport and strain relaxation in wurtzite InAs-GaAs core-shell heterowires

被引:55
|
作者
Kavanagh, Karen L. [1 ]
Salfi, Joe [2 ]
Savelyev, Igor [2 ]
Blumin, Marina [2 ]
Ruda, Harry E. [2 ]
机构
[1] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[2] Univ Toronto, Ctr Adv Nanotechnol, Toronto, ON M5S 3E4, Canada
关键词
ELECTRON-MOBILITY; NANOWIRE HETEROSTRUCTURES; DISLOCATIONS; DEVICES; GROWTH; FIELD;
D O I
10.1063/1.3579251
中图分类号
O59 [应用物理学];
学科分类号
摘要
Indium-arsenide-gallium-arsenide (InAs-GaAs) core-shell, wurtzite nanowires have been grown on GaAs(001) substrates. The core-shell geometries (core radii 11 to 26 nm, shell thickness >2.5 nm) exceeded equilibrium critical values for strain relaxation via dislocations, apparent from transmission electron microscopy. Partial axial relaxation is detected in all nanowires increasing exponentially with size, while radial strain relaxation is >90%, but undetected in nanowires with both smaller core radii <16 nm and shell thicknesses <5 nm. Electrical measurements on individual core-shell nanowires show that the resulting dislocations are correlated with reduced electron field-effect mobility compared to bare InAs nanowires. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579251]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Faster radial strain relaxation in InAs-GaAs core-shell heterowires
    Kavanagh, Karen L.
    Saveliev, Igor
    Blumin, Marina
    Swadener, Greg
    Ruda, Harry E.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
  • [2] Axial strain in GaAs/InAs core-shell nanowires
    Biermanns, Andreas
    Rieger, Torsten
    Bussone, Genziana
    Pietsch, Ullrich
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (04)
  • [3] Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires
    Rieger, Torsten
    Zellekens, Patrick
    Demarina, Natalia
    Al Hassan, Ali
    Hackemueller, Franz Josef
    Lueth, Hans
    Pietsch, Ullrich
    Schaepers, Thomas
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. NANOSCALE, 2017, 9 (46) : 18392 - 18401
  • [4] Probing strain in wurtzite InP-InAs core-shell nanowires with Raman spectroscopy
    Zhao, Yongqian
    Xue, Mengfei
    Goransson, D. J. O.
    Borgstrom, M. T.
    Xu, H. Q.
    Chen, Jianing
    [J]. PHYSICAL REVIEW B, 2021, 104 (23)
  • [5] Carrier Transport in Molecular Beam Epitaxially Grown GaAs/InAs Core-Shell Nanowires
    Ruda, Harry E.
    Salfi, Joe
    Saveliev, Igor
    Blumin, Marina
    [J]. INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 44 - 44
  • [6] THERMAL AND ELECTRICAL TRANSPORT IN INAS-GAAS ALLOYS
    HOCKINGS, EF
    KUDMAN, I
    SEIDEL, TE
    SCHMELZ, CM
    STEIGMEIER, EF
    [J]. JOURNAL OF APPLIED PHYSICS, 1966, 37 (07) : 2879 - +
  • [7] Self-catalyst growth and characterization of wurtzite GaAs/InAs core/shell nanowires
    Tran, Dat Q.
    Islam, Md Earul
    Higashimine, Koichi
    Akabori, Masashi
    [J]. JOURNAL OF CRYSTAL GROWTH, 2021, 564
  • [8] Electron transport in InAs-InAlAs core-shell nanowires
    Holloway, Gregory W.
    Song, Yipu
    Haapamaki, Chris M.
    LaPierre, Ray R.
    Baugh, Jonathan
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (04)
  • [9] Crystal Phase Selective Growth in GaAs/InAs Core-Shell Nanowires
    Rieger, Torsten
    Schaepers, Thomas
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. CRYSTAL GROWTH & DESIGN, 2014, 14 (03) : 1167 - 1174
  • [10] Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy
    Zhou, H. L.
    Hoang, T. B.
    Dheeraj, D. L.
    van Helvoort, A. T. J.
    Liu, L.
    Harmand, J. C.
    Fimland, B. O.
    Weman, H.
    [J]. NANOTECHNOLOGY, 2009, 20 (41)