Equipartite edge colouring of multigraphs

被引:0
|
作者
Gionfriddo, Mario [1 ]
Amato, Alberto [1 ]
Ragusa, Giorgio [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G=(V,E) be a multigraph, without loops. For every vertex x, let Ex be the set of the edges of G that are incident to x. An edge colouring f of G is said to be an h-eguipartite edge colouring of G, for a fixed h is an element of N, h >= 2, if for every x is an element of V such that vertical bar E(x vertical bar) = hq(x) + r(x), 0 <= r(x) < h, there exists a partition of E(x) in q(x) colour classes of cardinality h and one colour class of cardinality r(x). The maximum number k for which there exists an h-equipartite edge k-colouring of G is denoted (chi)over bar(h) (G). In this paper we prove some results for 2-equipartite edge colourings. In particular we calculate (chi)over bar(2) (G) when G is a complete graph or a complete bipartite graph. This paper can be considered as a continuation of [5].
引用
收藏
页码:297 / 304
页数:8
相关论文
共 50 条
  • [41] Proper Hamiltonian Paths in Edge-Coloured Multigraphs
    Agueda, Raquel
    Borozan, Valentin
    Groshaus, Marina
    Manoussakis, Yannis
    Mendy, Gervais
    Montero, Leandro
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 617 - 633
  • [42] Analysis of a heuristic for acyclic edge colouring
    Subramanian, C. R.
    INFORMATION PROCESSING LETTERS, 2006, 99 (06) : 227 - 229
  • [43] COMPUTING EDGE-CONNECTIVITY IN MULTIGRAPHS AND CAPACITATED GRAPHS
    NAGAMOCHI, H
    IBARAKI, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (01) : 54 - 66
  • [44] Sum Edge Coloring of Multigraphs via Configuration LP
    Halldorsson, Magnus M.
    Kortsarz, Guy
    Sviridenko, Maxim
    ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (02)
  • [45] Proper Hamiltonian cycles in edge-colored multigraphs
    Agueda, Raquel
    Borozan, Valentin
    Diaz, Raquel
    Manoussakis, Yannis
    Montero, Leandro
    DISCRETE MATHEMATICS, 2017, 340 (08) : 1897 - 1902
  • [46] USING EULER PARTITIONS TO EDGE COLOR BIPARTITE MULTIGRAPHS
    GABOW, HN
    INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1976, 5 (04): : 345 - 355
  • [47] Degree sequences of optimally edge-connected multigraphs
    Dankelmann, P
    Oellermann, O
    ARS COMBINATORIA, 2005, 77 : 161 - 168
  • [48] APPLICATIONS OF EDGE COLORING OF MULTIGRAPHS TO VERTEX COLORING OF GRAPHS
    KIERSTEAD, HA
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 117 - 124
  • [49] Optimal edge-colourings for a class of planar multigraphs
    Marcotte, O
    COMBINATORICA, 2001, 21 (03) : 361 - 394
  • [50] Edge-Coloring Algorithms for Bounded Degree Multigraphs
    Dhawan, Abhishek
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 2120 - 2157