Hypersurface singularities with monomial Jacobian ideal

被引:3
|
作者
Epure, Raul [1 ]
Schulze, Mathias [1 ]
机构
[1] TU Kaiserslautern, Dept Math, Kaiserslautern, Germany
关键词
D O I
10.1112/blms.12614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every convergent power series with monomial extended Jacobian ideal is right equivalent to a Thom-Sebastiani polynomial. This solves a problem posed by Hauser and Schicho. On the combinatorial side, we introduce a notion of Jacobian semigroup ideal involving a transversal matroid. For any such ideal, we construct a defining Thom-Sebastiani polynomial. On the analytic side, we show that power series with a quasihomogeneous extended Jacobian ideal are strongly Euler homogeneous. Due to a Mather-Yau-type theorem, such power series are determined by their Jacobian ideal up to right equivalence.
引用
收藏
页码:1067 / 1081
页数:15
相关论文
共 50 条
  • [21] MONODROMY OF ISOLATED HYPERSURFACE SINGULARITIES
    BRIESKOR.E
    MANUSCRIPTA MATHEMATICA, 1970, 2 (02) : 103 - &
  • [22] Segre numbers and hypersurface singularities
    Gaffney, T
    Gassler, R
    JOURNAL OF ALGEBRAIC GEOMETRY, 1999, 8 (04) : 695 - 736
  • [23] Free deformations of hypersurface singularities
    Aleksandrov A.G.
    Sekiguchi J.
    Journal of Mathematical Sciences, 2011, 175 (1) : 1 - 16
  • [24] Bounding projective hypersurface singularities
    Castor, Ben
    ADVANCES IN MATHEMATICS, 2024, 458
  • [25] ON TJURINA IDEALS OF HYPERSURFACE SINGULARITIES
    Rodrigues, Joao Helder Olmedo
    JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (02) : 261 - 274
  • [26] Hypersurface singularities and Milnor equisingularity
    Trang, Le Dung
    Massey, David B.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2006, 2 (03) : 893 - 914
  • [27] The signature of a monomial ideal
    Ibarguen, Jovanny
    Moran, Daniel S.
    Valencia, Carlos E.
    Villarreal, Rafael H.
    AIMS MATHEMATICS, 2024, 9 (10): : 27955 - 27978
  • [28] Minimal discrepancies of hypersurface singularities
    Masek, V
    OSAKA JOURNAL OF MATHEMATICS, 2001, 38 (02) : 435 - 450
  • [29] ON HYPERSURFACE SINGULARITIES WHICH ARE STEMS
    PELLIKAAN, R
    COMPOSITIO MATHEMATICA, 1989, 71 (02) : 229 - 240
  • [30] On the radical of a monomial ideal
    J. Herzog
    Y. Takayama
    N. Terai
    Archiv der Mathematik, 2005, 85 : 397 - 408