Efficient quantum error correction for fully correlated noise

被引:18
|
作者
Li, Chi-Kwong [1 ,6 ]
Nakahara, Mikio [2 ,3 ]
Poon, Yiu-Tung [4 ]
Sze, Nung-Sing [5 ]
Tomita, Hiroyuki [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Kinki Univ, Interdisciplinary Grad Sch Sci & Engn, Res Ctr Quantum Comp, Higashi Osaka 5778502, Japan
[3] Kinki Univ, Dept Phys, Higashi Osaka 5778502, Japan
[4] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[5] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum error correction; Higher rank numerical range; Recovery operator; Mixed unitary channel; RANK NUMERICAL RANGES; CODES;
D O I
10.1016/j.physleta.2011.07.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate an efficient quantum error correction of a fully correlated noise. Suppose the noise is characterized by a quantum channel whose error operators take fully correlated forms given by sigma(circle times n)(x), sigma(circle times n)(y) and sigma(circle times n)(2), where n > 2 is the number of qubits encoding the codeword. It is proved that (i) n qubits codeword encodes (n - 1) data qubits when n is odd and (ii) n qubits codeword implements an error-free encoding, which encode (n - 2) data qubits when n is even. Quantum circuits implementing these schemes are constructed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3255 / 3258
页数:4
相关论文
共 50 条
  • [1] Quantum error correction scheme for fully-correlated noise
    Chi-Kwong Li
    Yuqiao Li
    Diane Christine Pelejo
    Sage Stanish
    [J]. Quantum Information Processing, 22
  • [2] Quantum error correction scheme for fully-correlated noise
    Li, Chi-Kwong
    Li, Yuqiao
    Pelejo, Diane Christine
    Stanish, Sage
    [J]. QUANTUM INFORMATION PROCESSING, 2023, 22 (08)
  • [3] Quantum error correction in spatially correlated quantum noise
    Klesse, R
    Frank, S
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (23)
  • [4] Approximate Quantum Error Correction for Correlated Noise
    Ben-Aroya, Avraham
    Ta-Shma, Amnon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3982 - 3988
  • [5] Decoherence by correlated noise and quantum error correction
    Novais, E.
    Baranger, Harold U.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (04)
  • [6] Quantum error correction with degenerate codes for correlated noise
    Chiribella, Giulio
    Dall'Arno, Michele
    D'Ariano, Giacomo Mauro
    Macchiavello, Chiara
    Perinotti, Paolo
    [J]. PHYSICAL REVIEW A, 2011, 83 (05):
  • [8] PERFORMANCE OF TOPOLOGICAL QUANTUM ERROR-CORRECTION IN THE PRESENCE OF CORRELATED NOISE
    Ahsan, Muhammad
    Naqvi, Syed Abbas Zilqurnain
    [J]. QUANTUM INFORMATION & COMPUTATION, 2018, 18 (9-10) : 743 - 778
  • [9] Quantum error correction driven entanglement dynamics in the presence of correlated noise
    De Chiara, G
    Fazio, R
    Macchiavello, C
    Palma, GM
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 (01) : 207 - 211
  • [10] Error correction schemes for fully correlated quantum channels protecting both quantum and classical information
    Li, Chi-Kwong
    Lyles, Seth
    Poon, Yiu-Tung
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (05)