AMalNet: A deep learning framework based on graph convolutional networks for malware detection

被引:66
|
作者
Pei, Xinjun [1 ]
Yu, Long [2 ]
Tian, Shengwei [3 ]
机构
[1] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi 830001, Xinjiang, Peoples R China
[2] Xinjiang Univ, Network Ctr, Urumqi 830001, Xinjiang, Peoples R China
[3] Xinjiang Univ, Sch Software, Urumqi 830001, Xinjiang, Peoples R China
关键词
Word embedding; Graph convolutional networks; Independently recurrent neural networks; Android Malware detection; Static analysis; NEURAL-NETWORKS;
D O I
10.1016/j.cose.2020.101792
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing popularity of Android apps attracted widespread attention from malware authors. Traditional malware detection systems suffer from some shortcomings; computationally expensive, insufficient performance or not robust enough. To address this challenge, we (1) build a novel and highly reliable deep learning framework, named AMalNet, to learn multiple embedding representations for Android malware detection and family attribution, (2) introduce a version of Graph Convolutional Networks (GCNs) for modeling high-level graphical semantics, which automatically identifies and learns the semantic and sequential patterns, (3) use an Independently Recurrent Neural Network (IndRNN) to decode the deep semantic information, making full use of remote dependent information between nodes to independently extract features. The experimental results on multiple benchmark datasets indicated that the AMalNet framework outperforms other state-of-the-art techniques significantly. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Unsupervised learning for community detection in attributed networks based on graph convolutional network
    Wang, Xiaofeng
    Li, Jianhua
    Yang, Li
    Mi, Hongmei
    NEUROCOMPUTING, 2021, 456 : 147 - 155
  • [42] Hybrid graph convolutional and deep convolutional networks for enhanced pavement crack detection
    Song, Qingsong
    Tian, Jiashu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [43] Learning Deep Graph Representations via Convolutional Neural Networks
    Ye, Wei
    Askarisichani, Omid
    Jones, Alex
    Singh, Ambuj
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2268 - 2279
  • [44] Image Classification Based on Deep Graph Convolutional Networks
    Tang, Tinglong
    Chen, Xiaowang
    Wu, Yirong
    Sun, Shuifa
    Yu, Mei
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 764 - 769
  • [45] A Face Detection Framework Based on Deep Cascaded Full Convolutional Neural Networks
    Peng, Bikang
    Gopalakrishnan, Anilkumar Kothalil
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), 2019, : 47 - 51
  • [46] Automated machine learning for deep learning based malware detection
    Brown, Austin
    Gupta, Maanak
    Abdelsalam, Mahmoud
    COMPUTERS & SECURITY, 2024, 137
  • [47] A Heuristic Framework for Sources Detection in Social Networks via Graph Convolutional Networks
    Cheng, Le
    Zhu, Peican
    Gao, Chao
    Wang, Zhen
    Li, Xuelong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (11): : 7002 - 7014
  • [48] A Deep Learning Framework for Malware Classification
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil
    Wang, Yang
    Iqbal, Farkhund
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2020, 12 (01) : 90 - 108
  • [49] Partitioning Leakage Detection in Water Distribution Systems: A Specialized Deep Learning Framework Enhanced by Spatial-Temporal Graph Convolutional Networks
    Mu, Tianwei
    Zhang, Chunzheng
    Huang, Manhong
    Ning, Baokuan
    Wang, Junxiang
    ACS ES&T WATER, 2024, 4 (08): : 3453 - 3463
  • [50] A Method for Windows Malware Detection Based on Deep Learning
    Huang, Xiang
    Ma, Li
    Yang, Wenyin
    Zhong, Yong
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2021, 93 (2-3): : 265 - 273