A 1-MJ capacitive energy storage

被引:4
|
作者
Fridman, B. E. [1 ]
Li, Baoming [2 ]
Belyakov, V. A. [1 ]
Enikeev, R. Sh. [1 ]
Kovrizhnykh, N. A. [1 ]
Kryukov, Yu. L. [1 ]
Roshal', A. G. [1 ]
Serebrov, R. A. [1 ]
机构
[1] Efremov Res Inst Electrophys Equipment, St Petersburg 196641, Russia
[2] Nanjing Univ Sci & Technol, Nanjing 210091, Peoples R China
关键词
Current Pulse; Capacitive Energy Storage; Capacitor Cell; Discharge Current Pulse; Ballast Resistor;
D O I
10.1134/S0020441211040208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A capacitive energy storage is intended for generating high-power current pulses. The setup consists of two capacitive energy storage modules, a control console, and a cable collector for connecting a load to the setup. Each module is a capacitive energy storage with a 0.5-MJ stored energy and 18-kV voltage, which is based on eight capacitor cells with reverse switch-on dynistors as switches. The module volume is 1.3 m(3). The semiconductor switches in the capacitor cells are activated by light pulses, which are transmitted from the control console through fiber-optic cables. The unit is designed for operating in the programmable discharge mode, at which the semiconductor switches in the capacitor cells are switched on nonsimultaneously but in accordance with a specified program. When the discharge of all the cells is switched on simultaneously and the load is short-circuited, the maximal amplitude of the output current pulse is 800 kA. The rise time of the discharge current pulse of the cell is 150 mu s.
引用
收藏
页码:695 / 698
页数:4
相关论文
共 50 条
  • [41] Design of a 1 MJ/100 kW high temperature superconducting magnet for energy storage
    Zimmermann, Andreas W.
    Sharkh, Suleiman M.
    ENERGY REPORTS, 2020, 6 : 180 - 188
  • [42] Design of a 4.5 MJ/1 MW sectored toroidal superconducting energy storage magnet
    Bhunia, Uttam
    Akhter, Javed
    Nandi, Chinmay
    Pal, Gautam
    Saha, Subimal
    CRYOGENICS, 2014, 63 : 186 - 198
  • [43] Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy Storage
    Zhang, Guoqiang
    Li, Qiong
    Allahyarov, Elshad
    Li, Yue
    Zhu, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (32) : 37939 - 37960
  • [44] Computational Insights into Materials and Interfaces for Capacitive Energy Storage
    Zhan, Cheng
    Lian, Cheng
    Zhang, Yu
    Thompson, Matthew W.
    Xie, Yu
    Wu, Jianzhong
    Kent, Paul R. C.
    Cummings, Peter T.
    Jiang, De-en
    Wesolowski, David J.
    ADVANCED SCIENCE, 2017, 4 (07)
  • [45] Nanocomposite Hydrogels with Temperature Response for Capacitive Energy Storage
    Garcia-Torres, Jose
    Colombi, Samuele
    Mahamed, Ikraan
    Sylla, Dioulde
    Arnau, Marc
    Sans, Jordi
    Ginebra, Maria-Pau
    Aleman, Carlos
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (08) : 4487 - 4495
  • [46] Polymer nanocomposites: Interfacial properties and capacitive energy storage
    Drakopoulos, Stavros X.
    Wu, Jiaen
    Maguire, Shawn M.
    Srinivasan, Sneha
    Randazzo, Katelyn
    Davidson, Emily C.
    Priestley, Rodney D.
    PROGRESS IN POLYMER SCIENCE, 2024, 156
  • [47] Drying graphene hydrogel fibers for capacitive energy storage
    Wang, Chaojun
    Zhai, Shengli
    Yuan, Ziwen
    Chen, Junsheng
    Yu, Zixun
    Pei, Zengxia
    Liu, Fei
    Li, Xuezhang
    Wei, Li
    Chen, Yuan
    CARBON, 2020, 164 : 100 - 110
  • [48] Carbonized cellulose beads for efficient capacitive energy storage
    Chang-Qing Ruan
    Zhaohui Wang
    Jonas Lindh
    Maria Strømme
    Cellulose, 2018, 25 : 3545 - 3556
  • [49] Carbonized cellulose beads for efficient capacitive energy storage
    Ruan, Chang-Qing
    Wang, Zhaohui
    Lindh, Jonas
    Stromme, Maria
    CELLULOSE, 2018, 25 (06) : 3545 - 3556
  • [50] Annealing atmosphere-dependent capacitive energy storage
    Bing-Bing Yang
    Hai-Yun Tong
    Shun Lan
    Yi-Qian Liu
    Lv-Ye Dou
    Hao Pan
    Yuan-Hua Lin
    Rare Metals, 2023, 42 : 1465 - 1471