Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells -: experiments and simulation studies

被引:96
|
作者
Dohle, H [1 ]
Jung, R [1 ]
Kimiaie, N [1 ]
Mergel, J [1 ]
Müller, M [1 ]
机构
[1] Forschungszentrum Julich, Inst Werkstoffe & Verfahren Energietech, IWV3, D-52425 Julich, Germany
关键词
diffusion layer; polymer electrolyte; fuel cells;
D O I
10.1016/S0378-7753(03)00800-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The flow distribution in fuel cells has an important influence on both the power density and efficiency of fuel cell systems. In order to effectively utilize the area, flow distribution should be as homogeneous as possible. In addition, pressure losses should be minimized with regard to the power demand of auxiliary components as pumps and compressors. In polymer electrolyte fuel cells (PEFCs) and direct methanol fuel cells (DMFCs) the flow field is in direct contact with the diffusion layer. The main task of the diffusion layer is to distribute the reactants from the flow field towards the catalyst layer. To prevent diffusion overvoltages, the diffusion layer is in general highly porous and provides high fluxes of the reactants. Consequently, the flow distribution in the flow field can be superpositioned by a flow in the diffusion layer. In this paper, we discuss the interaction between the diffusion layer and the flow field. Experimentally, we characterized different diffusion layers with regard to their diffusion properties as well as different flow fields. Additional simulation studies help to understand the processes and to determine suitable combinations of flow fields and diffusion layers. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [21] Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells
    Paganin, A.
    Ticianelli, E.A.
    Gonzalez, E.R.
    1996, Chapman & Hall Ltd, London, United Kingdom (26)
  • [22] Development of carbon-filled gas diffusion layer for polymer electrolyte fuel cells
    Han, M.
    Chan, S. H.
    Jiang, S. P.
    JOURNAL OF POWER SOURCES, 2006, 159 (02) : 1005 - 1014
  • [23] Investigation of convective transport in the gas diffusion layer used in polymer electrolyte fuel cells
    Beruski, Otavio
    Lopes, Thiago
    Kucernak, Anthony R. J.
    Perez, Joelma
    PHYSICAL REVIEW FLUIDS, 2017, 2 (10):
  • [24] The Effect of Clamping Pressure on Gas Diffusion Layer Performance in Polymer Electrolyte Fuel Cells
    El-kharouf, A.
    Steinberger-Wilckens, R.
    FUEL CELLS, 2015, 15 (06) : 802 - 812
  • [25] Does the thermal conductivity of gas diffusion layer matter in polymer electrolyte fuel cells?
    Csoklich, Christoph
    Sabharwal, Mayank
    Schmidt, Thomas J.
    Buchi, Felix N.
    JOURNAL OF POWER SOURCES, 2022, 540
  • [26] The Role of Gas Diffusion Layer in Cationic Contamination and Mitigation in Polymer Electrolyte Fuel Cells
    Uddin, Md. Aman
    Park, Jaehyung
    Wang, Xiaofeng
    Qi, Jing
    Pasaogullari, Ugur
    Bonville, Leonard
    Molter, Trent
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 537 - 544
  • [27] Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells
    Antolini, E
    Passos, RR
    Ticianelli, EA
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (04) : 383 - 388
  • [28] New Porous Carbon Materials as Gas Diffusion Layer for Polymer Electrolyte Fuel Cells
    Okada, Tatsuhiro
    Kyotani, Mutsumasa
    Yamamoto, Tomoaki
    Terada, Naofumi
    Yoshida, Shin-ichi
    ELECTROCHEMISTRY, 2020, 88 (05) : 423 - 428
  • [29] Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells
    E. Antolini
    R.R. Passos
    E.A. Ticianelli
    Journal of Applied Electrochemistry, 2002, 32 : 383 - 388
  • [30] Determination of oxygen transport resistance in gas diffusion layer for polymer electrolyte fuel cells
    Wan, Z. H.
    Zhong, Q.
    Liu, S. F.
    Jin, A. P.
    Chen, Y. N.
    Tan, J. T.
    Pan, M.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (06) : 2225 - 2233