Intertwining Symmetry Algebras of Quantum Superintegrable Systems on Constant Curvature Spaces

被引:1
|
作者
Calzada, J. A. [1 ]
Kuru, S. [2 ]
Negro, J. [3 ]
del Olmo, M. A. [3 ]
机构
[1] Univ Valladolid, Dept Matemat Aplicada, EII, E-47011 Valladolid, Spain
[2] Ankara Univ, Dept Phys, Fac Sci, TR-06100 Ankara, Turkey
[3] Univ Valladolid, Dept Fis Teor Atom & Opt, E-47011 Valladolid, Spain
关键词
Integrable systems; Intertwining operators; ISOSPECTRAL POTENTIALS; WINTERNITZ SYSTEM; HYPERBOLIC PLANE; DIMENSIONS; SPHERE; OSCILLATOR;
D O I
10.1007/s10773-010-0572-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of quantum superintegrable Hamiltonians defined on a hypersurface in a n+1 dimensional ambient space with signature (p,q) is considered and a set of intertwining operators connecting them are determined. It is shown that the intertwining operators can be chosen such that they generate the su(p,q) and so(2p,2q) Lie algebras and lead to the Hamiltonians through Casimir operators. The physical states corresponding to the discrete spectrum of bound states as well as the degeneration are characterized in terms of some particular unitary representations.
引用
收藏
页码:2067 / 2073
页数:7
相关论文
共 50 条